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ABSTRACT   

For the purpose of analysing data to determine underwater acoustic reflection 
coefficients at low megahertz frequencies, relevant theory is developed. For a target 
that may be in the near field, the three-dimensional point spread function for image 
points close to the target, is derived for rather general arrays and waveforms. The 
model of the active system is extended to allow a coded signal, a spherical transmitter, 
and a transmitter not in the receiver array plane. Here and elsewhere, conditions of 
validity are carefully obtained. Conditions are derived under which a ball target (used 
for calibration in the experiment) behaves as a point reflector. The image of a 
rectangular target, described by an angle-dependent reflection coefficient, is obtained. 
The preceding results lead to an 'integral relationship,' or 'energy conservation' 
relationship, proved for a point target and conjectured to hold generally. It is shown 
how this result would enable one to analyse the experiment to determine absolute 
reflection coefficients. 
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Theory Pertaining to Comparison and 
Calibration in an Experiment to Measure 

Acoustic Reflection Coefficients 

Executive Summary 

For minehunting in turbid waters, an underwater acoustic imaging device using low 
megahertz frequencies is being developed in industry following an initiative of DSTO. 
A problem is that, while rough surfaces are relatively easy to image, smooth surfaces 
(specular reflectors), when angled obliquely to the line of sight, tend to be invisible. To 
determine the extent of this problem, an experiment was performed, in which images 
were obtained for rectangular surfaces of different roughnesses inclined at various 
angles. Of particular interest is the diffuse component of the reflection from rather 
smooth surfaces; here 'diffuse' refers to the component that is spread over a wide range 
of angles of reflection. The diffuse component is of interest because, although weak, it 
may enable an image to be produced. 

The present report describes a way in which the results can be analysed to produce 
the absolute reflection coefficient as a function of roughness and angle. From that 
functional relationship, together with the characteristics of the imaging system, one 
should be able to predict the circumstances in which certain mines cannot be imaged. 
More usefully, one should be able to predict how low the instrumentation noise must 
be made in order to image a given mine in given circumstances. 

As stated, the present report describes a way of analysing the experimental results 
to produce the values of the reflection coefficient. For this purpose, various items of 
theory are developed. The key item in the theory is an 'integral relationship,' which 
expresses something akin to the conservation of energy in waves and fields. This 
relation says something like the following: that the 'energy' fed into the image by the 
receiving array is proportional to the 'energy' that is present in the image. The result is 
proved for a point target and is conjectured to hold generally. 

(More precisely, the integral relationship asserts proportionality between two 
'energies,' where, apart from slight modifications, these 'energies' are defined as 
follows. The first 'energy' is the squared voltage of the received signal, integrated over 
all the time during which the 'ping' is being received and summed over all sensor 
elements. Provided the beamforming is done by simple or weighted delay-and-add, it 
appears that this is the 'energy' that is 'fed' into the image in the beamforming process. 
The second 'energy' is the intensity of the image integrated over the three spatial 
dimensions.) 

In the lead-up to the integral relation and the method of analysis, a number of 
results are obtained as follows. The three-dimensional image of a point target, allowed 
to be in the near field, is found under fairly general conditions. Extensions of the model 
of the imaging system are made, in order that the conditions of the experiment are 



covered; the extensions include a spherical transmitter with its centre not in the 
receiver array plane. The conditions are derived under which a ball target—used for 
calibration in the experiment—behaves as a point reflector. Assuming the integral 
relationship, the image of a rectangular target, described by an angle-dependent 
reflection coefficient, is obtained. 
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1. Introduction 

1.1 Background: The Reflectivity Experiment 

The present work arose out of a problem in analysing the results of a certain experiment 
performed recently. That 'reflectivity experiment' aims to measure the acoustic reflection 
coefficient of various surfaces at low megahertz frequencies. Those surfaces, having the 
roughness characteristics of sandpaper, vary from acoustically smooth to quite rough (in the 
latter case, grain size «half a wavelength). While the scattering from the former surface is 
approximately specular, the reflection from the latter surface is diffuse in the sense that 
considerable amounts of energy are reflected at angles of the order of 90° away from where a 
specular reflection would emerge. In this monostatic experiment, the surface is inclined with 
its normal at various angles to the incoming beam. The angles cover the entire range from 0° 
(normal incidence and reflection) to near 90° (grazing incidence). 

The experiment has implications for the acoustic mine imaging (AMI) program that was 
initiated by the Maritime Operations Division (MOD) of DSTO and under which an AMI 
system is being developed by Thales Underwater Systems (TUS). Underwater acoustic 
imaging in general has been discussed by Murino and Trucco [2000]. Key aspects of the 
present AMI program have been discussed by various authors [Jones 1996; Blair and Jones 
1998; Blair and Anstee 2000; and Maguer et al. 2000]. The implications of the reflectivity 
experiment for AMI concern the fact that smooth surfaces are hard to image when they are at 
any angle other than normal to the line of sight. But if the smooth (but not perfectly smooth) 
surface has a significant diffuse component in its reflection, imaging of that surface may still 
be possible. The strength of the diffuse reflection is therefore of great importance. 

As a colleague has pointed out, when the diffuse scattering is small, success may depend 
on the level of volume reverberation being not too high. This is because the diffuse 
scattering events might not be seen above a certain set of double scattering events. The latter 
are those in which the sound is first scattered by a volume scarterer and second, reflected 
specularly from the solid surface.1 

1 A colleague has suggested that a near-specular reflector could be imaged by enlisting the aid of 
volume reverberation. In this proposal, the environment of the instrument would be seeded with 
suspended particles acting as scatterers. Then events in which the sound is doubly scattered—first by 
a particle and then by the reflecting surface—would return energy to the instrument even in the case 
of a perfect specular reflector (not oriented to return energy to the instrument by single scattering). 
However, imaging in this way does not seem promising—at least if delay-and-add beamforming is 
used—for the following reason. Given a path with double scattering, terminating in a given element, 
in a sense, beamforming fits to the data a path with single scattering. Accordingly, the peak in the 
image intensity—or the line or surface of peaks—is neither at the first nor at the second point of 
scattering, but at a greater range. Consideration of the many points of volume scattering and the 
many elements suggests that the 'image' of a particular reflection point on the solid surface will be 
quite blurred and of weak intensity. 

However, in the context of a specular reflector, a high density of volume scatterers might be put to 
use in another way. Consider just paths of single scattering. Due to these paths, the 'water' would be 
'seen' in the image and the interior of the solid would appear as a 'black' region; thus the surface 
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The reflectivity experiment will now be discussed in more detail. The experiment aims to 
determine the absolute reflection coefficient as a function of roughness and angle. From that 
functional relationship, together with the characteristics of the imaging system, one should 
be able to predict the circumstances in which certain mines cannot be imaged. More 
usefully, one should be able to predict how low the instrumentation noise must be made in 
order to image a given mine in given circumstances. 

The reflectivity experiment was the result of collaboration between MOD, TUS and the 
Ocean Technology Group of the University of Sydney. The reflectivity experiment involves 
the acquisition of a large number of acoustic images, in each of which two targets are 
present. In most of these "total images,' a comparison is made between two rectangular 
targets (often called plates). One of these, the 'standard' target, is kept at the same roughness 
(same target) and the same angle throughout the experiment. Thus for each pair, in principle 
one can find the ratio of the reflection coefficient of the variable or 'object' plate to that of the 
standard plate. In one (or in practice a few) of the total images, a comparison is made 
between the standard target and a small, smooth ball. The comparison with the ball is 
included for calibration purposes, to enable absolute reflection coefficients to be determined. 

An initial analysis of the data from the experiment has been carried out [Madry 2000]. 
However contamination by noise has been a problem and it is believed that as a result, the 
initial method of analysis was well short of optimal in terms of the information extracted. 

. In AMI, the noise is due to (i) clutter, that is, distant sidelobes due to the random nature of 
the array, and (ii) instrumentation noise. Of the two noise sources, clutter is the more 
important. In the reflectivity experiment, because the targets are small (relatively small 
number of voxels), the amount of clutter is correspondingly reduced, and the noises from the 
two sources become more or less equal. Volume reverberation, due to scattering from 
suspended particles, is expected to be a significant source of noise when the particle density 
is very high. However this source is not significant in most of the AMI experiments to date, 
and in particular it is not significant in the reflectivity experiment. 

It is believed that, subject to an assessment of the costs and risks, a more thorough 
analysis of the data is desirable. The purposes of this new analysis would be: (i) by 
subtraction and averaging, performed on the voxel intensities, to more fully remove the 
effects of noise, and (ii) to obtain further results, in particular the reflection coefficients. The 
latter result would follow from a theoretical analysis that would in particular, distinguish 
between the angular dependence of the reflection coefficient and that of the voxel intensities 
in the neighbourhood of the reflecting surface, by showing where 'further factors, such as 
cos/,' enter (see below). 

In regard to purpose (i), one would attempt to subtract off the instrumental noise (spatial 
average) and the clutter noise, leaving only the contribution arising from the reflection 
coefficient (with fluctuations). The instrumental noise is believed to be independent of 
position in the image, so its average value should be easy to estimate by examining regions 
in which both the clutter and the 'genuine' image intensity are negligible. The clutter varies 
with position relative to the target, as well as having spatial fluctuations that are effectively 
random.  The hope would be to estimate its approximate value (apart from fluctuations) at 

would be delineated.   Before pronouncing on the viability of this concept, calculations would be 
required, particularly regarding the effect of second scatterings that arise due to the specular reflector. 
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each voxel near the target by making reasonable assumptions. The subtractions are not 
discussed further in this report. 

In regard to the 'averaging' in purpose (i), when estimating the image amplitude A due 
to the reflection, and hence the reflection coefficient, clearly the more voxels that one 
averages over, the better, from the viewpoint of removing noise. In the initial analysis, 
Madry [2000] appears to have integrated the amplitude (or its square) over a surface parallel 
to the surface of the plate, that is, summed over a 2D array of voxels. It is hoped that a 
further reduction in noise can be achieved by performing a further integration along the 
direction perpendicular to the surface.2 Integrals with respect to the coordinate n will 
appear naturally in Section 9; it is now seen that they are potentially useful. 

In regard to purpose (ii), consider the voxel intensity, say at a point on the reflecting 
surface, as a function of the angle of incidence /. Naively one might think that this intensity 
is simply proportional to the reflection coefficient. However, in the absence of a theoretical 
account, it is not clear whether further factors, such as cos/, enter into the proportionality. 
Such theory is therefore needed. 

The present report has been written, mainly to serve purpose (ii) above, that is, to show 
how to analyse the experimental date to produce further results, in particular, values of the 
reflection coefficients. Theoretical argument backing the method of analysis is also provided. 
Some contribution towards purpose (i) is also made, by means of the extra integration 
discussed above. 

1.2 The Present Report 

We now describe the present report in more detail. The final outcome of the report is the 
proposing of a method for each of two stages of the experimental analysis (the plate-plate 
stage and the plate-ball stage). However, a prerequisite for that method is the development 
of an 'integral relationship' (described below); this development is also given in the report. 
For this in turn, it is found necessary to develop formulae for the image of each of the 
following: a point target, a small ball and planar surface that may be rough. Considerable 
care is taken to develop the conditions of validity applicable to each result. 

The 'integral relationship' arises in the following way. When the two plates being 
compared are inclined at different angles, it is not obvious how the ratio, i?, say, of the 
reflection coefficients is related to the set of voxel intensities in the neighbourhood of each of 
the two plates. Possibilities include the following, (i) The maximum voxel intensity along a 
line through each plate is determined, and the ratio of these two maxima is equated to i?,. 
(To reduce noise, one could integrate over an area parallel to the plate's surface, before 
determining the maximum, as discussed above.) (ii) A line integral of intensity, along a line 
perpendicular to each surface, is evaluated, and the ratio of these two integrals is equated to 
Rx. (To reduce noise, a volume integral could be taken.) (iii) Alternatively, it could be that, 
for a correct result, some other factor, such as cos/ (as discussed above) needs to be included 

2 Note that the use of this integral requires some method of 'cutting off the integral so that a false 
estimate of the instrumental noise or clutter does not lead to a divergent integral. 
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in the quantity determined in (i) or (ii) for each plate. To resolve this issue, it is conjectured, 
with a supporting argument, that a certain 'integral relationship,' similar to the energy 
conservation relationship in diffraction theory, holds.3 (In fact factors such as described in 
possibility (iii) do enter, see Eqns 7.14 and 9.3.) 

Essentially the integral relationship says that the 'energy' fed into the image by the 
receiving array is proportional to the 'energy' that is present in the image. (More precisely, 
the integral relationship asserts proportionality between two 'energies,' where, apart from 
slight modifications, these 'energies' are defined as follows. The first 'energy' is the squared 
voltage of the received signal, integrated over all the time during which the 'ping' is being 
received and summed over all sensor elements. Provided the beamforming is done by 
simple or weighted delay-and-add, it appears that this is the 'energy' that is 'fed' into the 
image in the beamforming process. The second 'energy' is the intensity of the image 
integrated over the three spatial dimensions.) 

The layout of the report is as follows. Section 2 defines a model system similar to that 
used in the experiment, and sets out the image-forming (i.e. beamforming) theory for that 
model. The consideration of the differences of the experiment from the model, such as the 
location of the transmitter's centre away from the receiving array plane, is postponed to later 
in the report (Section 5). Building on Section 2, Sections 3 and 4 derive an expression for the 
image amplitude due to a point target (point spread function) that holds out through the first 
few angular and range sidelobes, for very general arrays and transmitted waveforms. Note 
that, while these expressions hold exactly under certain limiting conditions, in practice 
usually some of the conditions do not hold all that well and consequently the expressions 
suffer noticeable errors. 

Section 5 considers differences4 of the experimental arrangement from the model. These 
include the use of a spherical rather than a point transmitter, and the location of the 
transmitter's centre away from the receiving array plane. Coded signals such as chirps are 
also dealt with in this section. It is shown the three differences are readily incorporated into 
the theoretical formulae developed in Sections 3 and 4. 

Section 6 treats the imaging of a small, smooth ball and shows that, under certain 
conditions —satisfied in the experiment—the ball is equivalent to a single point scatterer. 
Section 7 describes the response of a rough planar surface in terms of its angle-dependent 
reflection coefficient. 

Section 8 puts forward as a conjecture the 'integral relationship' or 'energy conservation' 
relationship. Arguments are given that make this result plausible; in particular, the result is 
proved to hold for a point target. Assuming the integral relationship, the image of a 
rectangular target, described by an angle-dependent reflection coefficient, is obtained. 

3 This relationship was earlier proposed in an unpublished report: Blair, D.G. (2000), 'An Integral 
Relationship between Acoustic Properties of a Surface and Image Intensity' (DSTO Registry 600-1-62, 
item 24). In that report, only the briefest of outlines was given of the argument in support of the 
integral relationship. 
4 Another difference comes to mind, namely: it has not been established that the total target is 
equivalent to a collection of omnidirectional point scatterers with no double scattering events. But 
such equivalence is not actually used in the report for any of the targets: the point target, the ball and 
the rough planar surface. 
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Section 9 shows how certain results of this report, namely the results for a small, smooth 
ball and a rough planar surface (Sections 6 and 7), and the integral relationship (Section 8), 
can be applied to the analysis of the reflectivity experiment. Conclusions are given in 
Section 10, where further work on the integral relationship is foreshadowed. 

2. Basic Model 

For an imaging sonar system, Section 2 defines two models of different generality and sets 
out the image-forming theory for each model. We first consider the more general model of 
the two, the 'general basic model' (Section 2.1) and then specialise to the 'restricted basic 
model' (Section 2.2). 

The consideration of the differences of the experimental arrangement from the latter 
model is postponed to Section 5. There it is shown that the theoretical results for a point 
target, derived in the first instance for the restricted basic model, are readily extended to 
apply to the experimental arrangement. 

2.1 General Basic Model 

Consider a sonar system that includes a spherical transmitter (in practice only a portion of a 
spherical surface), a receiving array and an omnidirectional point scatterer (see Fig. 1). The 
pressure produced at a receiver element due to the scattered wave is 

P(t)=Ptr* 
\ 

^    out        ret bD, 
fout+^v. 

'       a0 exp 
0C/ N --(rmt+rKt) (2.1) 

(see e.g. Blair and Anstee [2000], Sections 2, 3, with obvious corrections for a non-point 
transmitter and attenuation). Here the symbols have the following meanings: 

p{t) scattered wave pressure at the receiver element of interest (centre of front face) 

P\x<n (0 pressure at transmitter surface, on the axis of the transmitter, at time t 

roul distance of point target from front surface of spherical transmitter (outward path) 

rret distance from point target to the receiver element of interest (return path) 

b spherical radius of transmitter 

Dt (amplitude) directivity of transmitter in target direction (equal to unity on the axis 

of the transmitter) 

a0 target strength of point target (usual target strength equals 20log]0 |a01) 

a (energy) attenuation coefficient (assumed independent of frequency) 
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It is understood that, in p(t) and ptta3i (/), and in similar quantities below, the symbol refers 

to the analytic signal, except where the contrary is stated. 

r0U,=VU 

Array 

Figure 1: Tlie geometry of tlie sonar system.  U is a point target.  Tlie vector location of each of tlie 
points T, U and S is given in parentlieses. 
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The pressure at the transmitter surface, on the axis of the transmitter,5 will be written as 

Ar« (0 =/><£(') (2.2) 

The central frequency of £(/) is denoted by fc and the bandwidth by B. In (2.2), p0 is the 

maximum value of \pnm (/)| over time, and t = 0 is chosen to be the time at which this 

maximum value occurs. (In the case of a pulse with a rectangular envelope, the maximum 
corresponds to a whole interval in /; then t = 0 is chosen at the centre of that interval.) Thus 

the maximum value of |cj(/)| is unity, and this occurs at t = 0: 

|5(o)|-i (2.3) 

As implied above, £,(t) is the analytic signal. 

For the time being we restrict attention to a non-correlated signal, that is, the use of a short 
pulse to obtain range resolution. The extension to a correlated pulse (chirp or coded signal) 
is readily made and is given in Section 5.3. 

The array considered is two-dimensional (2-D) and the element faces lie in a common 
plane; the xy plane is taken to be parallel to this plane. The maximum directivity of each 
element is taken to be in the z or broadside direction. Then the voltage at any receiver 
element is 

E(t) = oDrp{t) (2.4) 

Here G is the sensitivity of the element (in volts per pascal) and Dr is the directivity of the 

element in the direction of the target; Dr is unity in the broadside direction. 

For the nth element we combine (2.1) and (2.4) to yield 

Enif) = <5nDrnPxst t- 
v    +r ' out^'retn bD. 

kut+^Vret« 
a0 exp —( ) 

~ V out ""ret n / (2.5) 

We shall rewrite this expression in terms of r,, the location of the spherical centre of the 

transmitter, r0, the location of the point scatterer and r„, the location of the centre of the 

front face of the nth element. Thus 

5 It is assumed that the beam pattern of the transmitter across its surface is the same as the beam 
pattern at the distances where the targets are located. 
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E„(f) = ^nDrnptra 

f 
t- 

|r0      'l 

c 
) 

e 

bD, 

lro 

xp 

ii          i a° 

a(l                   1        L       1 -yl|ro-r,|-^ + K -J) 
(2.6) 

The complex image amplitude at r is obtained by adding the voltages evaluated at suitable 
times: 

4r)=Xw«£Jlr-r'l-Hr-r«l)A]; (2-7) 
n 

this is called the image-forming (or beamforming) equation. The usual image amplitude is then 

|^(r)|. In (2.7), wn (taken to be real) is a weighting factor. We shall consider only the case 

where wn varies in a non-rapid way with the position of the element in the array. The 

following normalisation is imposed: 

2>«=Af (2-8) 
where N is the total number of elements. (In the reflectivity experiment the shading is 
uniform: wn = 1.) 

In the case where there are a number of point targets, the pressure p(t) becomes the sum 
of a number of terms, each given by the right-hand side of (2.1); and the voltage becomes the 
sum of terms, each given by (2.5) or (2.6). Equation (2.7) still gives the image amplitude; note 
that the image amplitude A{r) is the sum of the image amplitudes due to the various point 
targets. The corresponding summation result does not in general hold for the image intensity 

defined by /(r)= |^(r)|". 

2.2 Restricted Basic Model 

Next we obtain the 'restricted basic model' by specialising the above more general model in 
two ways. First, we consider the case where the transmitter is a point. Second, we consider 
the point transmitter to be on the front plane of the receiving array; we shall choose the 
origin at the transmitter; thus r, = 0 (see Fig. 2). It will be convenient also to require that the 

transmitter be not too far from the centre of the array. The criterion chosen is that 

|rc-r,|<f(H) (2.9) 

where rc is the centre of the array and L is the maximum dimension across the array. Thus 

the transmitter lies either within the array or not far outside it. (In Eqn 2.9, r, is retained, 

rather than being replaced by zero, for ease of comparison with later results.) 
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U 

Array 

Figure 2: Specifying tlie location oftlie point target U and a particular image point J, for tlie model of 
Section 2.2. In tlie model, tlie point transmitter T is in tlie plane oftlie array and tlw origin 
is chosen tltere. Tlie nth element is at S. 
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For a point transmitter, Equation (2.6) then becomes 

E„(t)=G„Drnbpa 

(     ^o+k-rj^ D, 
r*o exP + r„ r.D (2.10) 

Here it is understood that the product bpaax (•) (and similarly bp0 in Eqn 2.12) is to be 

treated as a unit, which approaches a finite value in the limit in which b —> 0 while the 
acoustic power emitted by the transmitter is held constant. Making the approximation that 
the directivity Drn = Dr is the same for all elements, and using (2.2), we rewrite (2.10) as 

En{t)=vnDra0HZ, 
(
t   /b+|r0-r„l>v 

V / 
where 

H = _bp3£L_ 
-y(ro+|«o-rl,|) 

(2.11) 

(2.12) 

Actually H depends on n, but we now ensure that H is independent of n by making the 
simplifying approximation: 

H = ^LcxP(-ar0) (2.13) 

A sufficient condition for this approximation to be accurate is obtained by considering the 
approximately plane wavefronts of spherical waves emanating from r0; the path to r„ is 

replaced by the path to r,. The sufficient condition is that both6'7 

r0 » L   and   cc[j L sin 60 + 4 \rc. - r, | sin 90 ]« 1 (2.14) 

Here r0 = (r0,60,<}>0) in spherical polars (see Fig. 2; also Fig. 3 below). (We have used the 

assumption that rc - r, lies in the plane of the receiving array.   The inequality r0 » L in 

6 As used in this report, the symbols <, «, etc. normally represent order relations, similar to 0{f) 

and o{f), where / is some function of the independent variables. The details are indicated in these 

brief notes. The relations are always between positive quantities, f > g means ' f/g is bounded 

below by a positive number/ f «g means f/g —» 0 . /~ g , in practice written as / = g or 

' / is given by g ' means f/g —> 1. Additionally it is implied that the relationship concerned (< , 

«, etc.) holds uniformly with respect to all parameters (as in the uniform convergence of series). 
7 Sometimes, as in (2.14), a numerical factor is inserted in relations such as / « g . In the present 
case the basic assertion is of the form' h~ j if / « g'. The numerical factor is inserted in / « g 

in order to give a stronger indication regarding when the approximation h = j is accurate. 

10 
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Eqn 2.14 obviously suffices to justify the approximation made to the spherical spreading 
factor in 2.13.) Because of (2.9), the second inequality in (2.14) may be replaced as a sufficient 
condition by |aZ sin 80 «1. Thus (2.14) can be replaced8 as a sufficient condition by 

r0»L   and   |aZ,sin0o«l (2.15) 

The image amplitude (2.7) becomes 

n 

= Dra0H^w„G„Z) 

rr-r0+\r-rJ~|r0-r„n (2.16) 

We next deal with Gn. As part of the model, we assume that the sensitivities o"„, in each 

local area of the array, have the same distribution as in the whole array. Then (as long as the 
number of elements N is very much greater than one — a condition not hard to meet), sums of 

the form *£ G„f„ and ^0„2/„ may be evaluated as 

X.a-/»=*0L/-    and    Xoi/,, =oLX,/„ (2.17) 

provided that /„ does not vary rapidly with the position of n. (Here G and o"^ are the 

mean and root-mean-square values of Gn). The reason is as follows. Consider the part of 

the summation that covers a small (but not too small) interval or region of the position of n. 
In this partial sum, /„ is a constant to a good approximation, and so it may be taken outside 

the summation sign. But with interval size chosen not too small, there are many elements 
contributing to the partial sum, so that G„ (or G2

n) may be replaced by its average. Putting 

together the partial sums and recalling our assumption that G and GTms are constant over 

the array, we obtain the result (2.17). Equation (2.16) then becomes 

A(r)=D,a0H&£w£ 
^o + r-r„ rro-r« (2.18) 

8 It also follows that H is independent of the transmitter location (subject to 2.9).   (To reach this 
conclusion we make the reasonable assumption that D, changes negligibly when the direction of the 

target from the transmitter changes by a small amount of order L/r0 .) 
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3. Angular Dependence of the Point Spread Function 

In Sections 3 and 4, for the restricted basic model, a formula is derived for the point spread 
function (PSF) that holds out through the first few angular and range sidelobes, for very 
general arrays and transmitted waveforms. Section 3 derives the angular dependence of the 
PSF; Section 4 will extend this result to obtain the 3-D dependence. (For ease of presentation, 
Section 3 also assumes that the transmitted waveform is a short toneburst.) 

Section 3 begins by considering two 'close-to-target' approximations. It is thus shown 
that, under certain conditions, the far-field expansion for the point spread function is 
accurate to first order even though the target is, in general, not in the far field. As expected 
from this similarity to the far field, the formula for the PSF referred to above involves a 
Fourier relationship to the distribution of element strength. 

Recall that a later goal is to derive an integral relationship relevant to the reflectivity 
experiment. In the latter, the array is sparse and random. Now, of the two integrals in the 
integral relationship, one is the image intensity integrated over volume. For a sparse, 
random array, with a point target, the intensity of the distant sidelobes is (in some cases) 
constant with angular displacement, on average. Because of this, the spatial integral shows a 
kind of divergence: the integral is much larger than would be obtained from the inner lobes 
alone. Such a large integral is not what we seek for the integral relationship. We deal with 
this problem by introducing a modified PSF that has a Fourier relationship with a smoothed 
version of the element strength distribution. The modified PSF does not have the 
troublesome distant sidelobes. 

3.1 Close-to-Target Approximation 

It has been noted before [Smith et al. 1991 ; Blair and Anstee 2000, p. 36], from simulations, 
that the angular beam pattern of a point target in the near field is, at least approximately, the 
same as in the far field. Others [Steinberg 1976, p. 322; Murino and Trucco 2000] have shown 
asymptotic equality between the two patterns, but have shown this only within the context 
of using the Fresnel approximation. We shall show that, under certain limiting conditions, 
not requiring the Fresnel approximation, the two patterns are the same. 

First consider the far-field expansion of Equation (2.16). Expressing |r — r„ j and |r0 -r„| as 

square roots and expanding in descending powers of r and r0, we obtain for the point spread 
function (PSF), to second order, 

(3.1) 

Of the four terms in the curly brackets, consider the second term, which is the first-order 
term. Truncation after this term gives exactly the far-field angular beam pattern which, in 
the case of a narrow-band signal (B « fc), is essentially the Fourier transform of the array 

12 



DSTO-TN-0417 

distribution. (On the left-hand side the subscript 0 has been added to A(r) to emphasise that 

this is the PSF, i.e. the image amplitude due to a point target.) 

Now, instead of the far-field expansion, consider an expansion of (2.16) in terms of the 
displacement r - r0 of the image point from the target point. First we obtain the expansion 

when carried out as a Taylor series in terms of the Cartesian components of r - r0 (Cartesian 

close-to-target expansion). The result to second order is 

Aö{r)=DraQH^wn(5n^ 

with F =-L -^1        2 

c[ lro-r»l 

ko -rj2|r-r0|
2 - [(r0 -r„)• (r-r0)]' 

(3.2) 

This time there is no zero-order term (i.e. zero-order in r - r0); the first and second terms in 

the curly brackets together give the first-order contribution. 

Second, consider r to be expressed as spherical polar coordinates (r,6,<))), where the polar 
direction z is broadside to the array and 6 is the co-latitude (see Fig. 3). This time, after- 
going back again to Equation (2.16), we expand in terms of r - r0, 0 - 0O and ty-ty0 (spterical 

polar close-to-target expansion). The result from this, to first order, is 

A0(r)=Dra0H
y£wnonZ, 

\\, _   v    [r0 - rn sin 60 cos(<t>0 - §n )\r -r0)+E2 
iv    ro)+ I I (3.3) 

with E2 = ror„ i- cos 0o cos^o - 4>„ X© - ö0)+ sin 90 sin(<>0 - $„ X4> - <t>0)] 
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Array 

Figure 3: Specifying tJie splterical polar coordinates (r, 0, ())) oftlie image point}, again for tlie model 
of Section 2.2. OK is tlie projection ofOJ onto tlie plane oftlie array. 

Consider the three expansions, (3.1), (3.2) and (3.3), but each truncated at first order. 
While the three truncated expansions are not quite equal, the differences can be shown to be 
of a higlier order tlmn tlie retained terms.   (The proof is omitted.)   To state the result more 
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precisely, for the rest of this paragraph, let us adopt the convention that each of '(3.1)', '(3.2)' 
and '(3.3)' refers to just the contents of the curly brackets in the respective equation. A 
'truncated' version of any of these refers to truncation at first order. The result is fourfold. 
First, for displacements r-r0 in the radial direction (parallel to r0), the difference between 

truncated (3.2) and truncated (3.1) is small compared to the term l{r - r0) in (3.1). Second, 

for displacements r - r0 along the sphere r = r0, the difference between truncated (3.2) and 

truncated (3.1) is small compared to the angular term -(r-r0)-r„ in (3.1). Third and fourth, 

the analogous results hold for the comparison of the expression (3.3) with (3.1). 

These findings give us confidence to proceed to the next step, that of showing that, under 
appropriate conditions, not necessarily far-field, the expansion (3.1), truncated at first order, 
is accurate. To find these conditions, we need to determine when the quantity in curly 
brackets is given correctly, not just in relative terms but to within a small fraction of a 
wavelength. We need conditions under which the errors in both (i) the second- and higher- 
order terms, and (ii) the differences in the first-order terms, are negligible on the wavelength 
scale. This question has been investigated; the result is as follows (proof omitted). 

Even when r and r0 are not in the far field, the far-field expansion (3.1), truncated at first 

order, is accurate for tlie purpose of calculating the image amplitude, provided that four conditions 
hold. Those conditions are: 

(i)        r is no further away in angle from r0 than the first few sidelobes; 

(ii)        60 is not near 90°; 

(iii)       X« L « r0; and (3.4) 

(iv)      a restriction on the ranges holds as follows: 

(a) \r-r0\ « X(r0/i)
2 in the case r0 <   L2/X; 

(b) r » L2 /X in the case r0 » L2/X. 

Note that the restriction on range, r0 » L, in (iii) is much weaker9 than the far-field 

restriction r0 » L2/X. The two cases in (iv) are respectively the cases of the target in the 

near and the far field. From Steinberg [1976], the size of the focal zone based on r0 is 

7X(r0/L)2. Thus the condition (iv)(a) on r-r0 is precisely the requirement that r must He 

well within that focal zone. 

9 The restriction rQ » L is also considerably weaker than the condition associated with the validity 

of the Fresnel approximation: see above Equation (3.16). 
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3.2 Derivation of Point Spread Function (Angular) 

3.2.1 General 

We have seen that, under the conditions (3.4) (essentially, image point close to the point 
target), Equation (3.1) holds to first order. Then (2.18) becomes 

A0(r)=DraQHö^wn^[2(r-r0)-(f-P0)rn]^ (3.5) 

where the G is explained at Equation (2.17). In the present Section 3 we restrict attention to 
the case in which (i) the image point lies on the sphere r = r0, and (ii) the signal is a 

toneburst, given by 

^(/) = exp(/2^?)rect(//7) (3.6) 

where T is the duration of the burst; the burst has frequency/and wavelength  X. (Both the 
restrictions (i) and (ii) will be removed in Section 4.) Thus (3.5) becomes 

A0(r)= Dra0H o^wnexp -J27t-(P-r0)-rn rect 
cT 

(3.7) 

We now drop the rect factor; the condition for this will be obtained in the paragraph 
containing (3.16). Then we may write 

4)(r)=A-tfo#°JexP j2x-{r-r0)-R w{R)g(R)d2R (3.8) 

where the shading factor w(Rj= wn varies with position in a non-rapid way (as discussed 
near Eqn 2.7), the quantity 

*(R) = 2*(R-rJ (3.9) 

is the (unsmoothed, unweighted) element number density, and R is a 2-D vector in the xy 
plane. 

Equation (3.8) may be rewritten in terms of the weighted element number density, defined 
as 

g"(R)=M<R)g(R) (3.10) 
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We define the Fourier transform Gw(K)of the latter, via the definition of the Fourier 

transform of a general function h{R), namely 

F[A(R)]= H(K)= je-J2*K*h(R)d2R (3.11) 

Then (3.8) becomes 

A0{r)=Dra0HaGw(K2) (3.12) 

where 

and the operator P    means projection onto the xy plane.   K2 is expressed in a natural way 

by using u and v as the angular coordinates, where 

(3.14) 

Thus 

u = 
X 
— = sin0cos(() 
r 
y 

v = — = sin9sin<|) 
r 

1 
~(x,y) (x0,y0) 

(3.15) 

= (l/X)(u-u0,v-v0) 

where u0 and v0 refer to the target direction. 

The key result, (3.12) or (3.8), establishes the point spread function AQ(r) and the 

weighted element density w(R)g(R) as Fourier transforms of each otlier (with multiplicative 
constants inserted). This result will reappear at Equation (3.23) for a smoothed array, 
expressed in terms of the directivity. The smoothed result will again appear at Equation 
(4.19) but generalised to cover the three-dimensional FSF. The basic result (3.12), expressing 
the Fourier relationship, is of course not new in the case of the far field. It is given, for 
example, by Ziomek [1985, p. 38] (who actually considers the more general case of 3-D 
arrays). That result is given also by Steinberg [1976, pp.12,15] in the cases of the 1-D and the 
2-D array; only for the former does he make the Fourier connection explicit. What is new in 
(3.12) and (3.23) is that the Fourier relation holds also in the near field subject to certain 
conditions, chief of which is that the image point r lies in the first few angular lobes. Note 
also that the 'near field' in which the result holds covers not merely the ranges for which the 
Fresnel approximation (the retaining of one term beyond the far-field term [see Ziomek 1985, 
p. 37; Steinberg 1976, p. 36]) is valid, but covers all the region r0 » L (see (iii) of Eqn 3.4). 
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It remains to determine the condition under which the rect factor can be dropped. Within 
the first few sidelobes, the argument of the exp in (3.7) is no greater than order unity; thus 
we have 

l^-^oK^   1 (3.16) 

The condition required is that the argument of rect in (3.7) have absolute value less than V2. 
We impose the requirement that the argument be small compared to unity; this is a sufficient 
condition.10 Combining this with (3.16), we obtain the sufficient condition (l/cT)X «1, 
which may be written as 

fT »1 (3.17) 

3.2.2 Sparse Arrays 

In a sparse array the spacing between elements is large compared to half a wavelength-the 
latter being the spacing that, in a periodic array, is just sufficient to always avoid grating 
lobes. A sparse array may be periodic or random, or it may be neither of these. Provided the 
array is not extremely sparse, the first few lobes" of the intensity point spread function (PSF) 
are essentially the same as for a filled array (or an aperture) (see Fig. 4). Consider first the 
periodic case, beginning with the monofrequency subcase: then, as the angular displacement 
increases, eventually the sidelobes increase again in height and grating lobes are produced. 
In the wideband subcase, each grating lobe is 'smeared'; its height is reduced but it extends 
over a greater interval of angles. Second, consider random arrays: these have been discussed 
by Steinberg [1976] and Steinberg and Subbaram [1991]. For these arrays, after the first few 
sidelobes the sidelobe level, on average, either: (i) stays constant, as in the monofrequency, 
far-field case; or (ii) in the wideband case (as discussed by Blair et al. [1994]) the level 
continues to decrease but considerably more slowly than for the filled array. In each of cases 
(i) and (ii), superimposed on the trend described are random fluctuations, comparable in size 
to the sidelobe intensity itself (Fig. 4). In the monofrequency case the average sidelobe 
intensity is 1/7V times the peak intensity. 

10 The reason for imposing this stronger requirement is that the resulting condition then continues to 
be the condition of validity in the case of a more general signal t, (/) (Section 4). 
11 Here the term 'lobe' includes both the main lobe and sidelobes. 

18 



DSTO-TN-0417 

Sparse array 

Filled array 

Figure 4: Intensity beam pattern of a sparse array, compared to a filled array of the same aperture. A 
slice through tlve angular beam pattern is shoxon. Point target is at K. A decibel scale is 
used. See text. 

For the purposes of the integral relationship, it xirill be sufficient to represent tlie PSF 
accurately in tlve first few angular lobes. Because of this, for the present we restrict attention to r 
lying no further from r0 than the first few angular sidelobes. Then even for a sparse array, 

the angular beam pattern is the same as for the aperture.12 This result is subject to the 
condition that, in the sparse array, N is quite large compared to one—this condition is not 
very demanding. Then g(R) may be replaced by a smootlied version of itself to be denoted by 

g(R). g(R) is the smootlied (or local) element density. We define also the weighted, 

smoothed element density g" (R)= w(R)g(R). G(K) and G
W
(K) are defined as the 

transforms of g(R) and gv (R) respectively. 

12 This result is obtainable-at least for the far-field, monofrequency case—from Steinberg [1976, pp. 
142-144]. 
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Thus, at least in the near lobes, Equation (3.12) becomes 

I0(r)=Dra0HoGw{K2) (3.18) 

The bar on the symbol A0 is explained below (3.19). Equation (3.18) is the fundamental 

result of Section 3. It will later be written in a different guise as Equation (3.29); the 
conditions for the validity of these two formulae are noted at that point. 

Consider for the moment the case where the elements are distributed uniformly over the 
aperture. (This case includes, among other cases: (i) a sparse, random array with uniform 
probability distribution, and (ii) an array of elements lying on a square lattice, provided in 
both cases that there is no shading of any kind.) (Non-uniform cases will be discussed in 
Section 3.2.3.) Then we may take 

g{R)=N/Sap       R in the aperture 

= 0 otherwise 

where S    is the area of the aperture. 

The replacement of g(R) by g(R) is important. Without it, the volume integral of the 
image intensity would, for a sparse array, be dominated by the distant sidelobes—whether 
they be grating lobes, as in the case of a regular array, or the 'smeared-out grating lobes,1 as 
in the case of a random array. The expression for A0(r) in (3.18) (dependent on gor G ), 
when evaluated in the distant sidelobes, is small and the volume integral in this region no 
longer dominates the integral over all space. The notation A0(r), including a bar, is so far 

defined only for the first few lobes. We now extend the notation to otlier values of r, to mean 
a quantity that is zero or negligible.13 Then clearly Equation (3.18) holds, not just in the near 
lobes, but at all r (in the sense that the error is small compared to the peak value of AQ (r)). 

Let us write down the criterion for an array to be well-filled, i.e. sufficiently dense so that 
the system does not "come close' to exhibiting grating lobes (either simple grating lobes or 
the smeared-out grating lobes characteristic of sparse, random arrays). The criterion for this 
is that the mean separation of neighbouring elements is small compared to the wavelength 
Xc (compare the customary critical value jX). (We write Xc in place of X, anticipating the 

more general cj to be introduced at Eqn 4.4.) Thus, since the array is 2-D, the grating lobe 
criterion is that 

L2/N«X2
C,   i.e.   M~/Sap»l (3.20) 

13 For reasons that will become apparent in Section 8, we also require that the angular integral of 

\A0 (r)| cos 0 in (8.2) over the distant sidelobes be negligible compared to the corresponding integral 

over the first few lobes. 
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(Here it is assumed that in all directions, the distance across the array is of the same order of 
magnitude, namely L.) Equation (3.20) is the criterion for a well-filled array. In this case the 
distant sidelobes are expected to decrease with angular displacement almost as fast as for the 
aperture itself. 

On the other hand, a sparse array is defined by the condition 

M2
c/Sap«l (3.21) 

For a sparse array, the first few angular sidelobes will still be given accurately provided that 
N is large enough compared to one. 

3.2.3 Shaded Arrays 

In Section 3.2.2 we paid particular attention to the case where there is no element shading of 
any kind. Three cases, each of which involves some kind of element shading, are discussed 

in Appendix A. The three cases turn out to be equivalent in their effect on A0 (r). Indeed the 

effect of each is equivalent to suitably modifying the 'shading' given by the smoothed-out 
element number density g(R) away from the value it has in the completely unshaded case. 
The theory of Sections 3.2.1 and 3.2.2 (in particular, Eqn 3.18) which prima facie applies only 
to the first two cases, applies also the third case with a trivial modification. 

3.2.4 Directivity 

jD(9,<));60,<t)0), alternatively written D(u,v;u0,v0), is tlie far-field directivity of the smootlted 

aperture g(R), for a target placed in the direction (0O,(()O). (Note that this D incorporates 

any weighting factor w(R), but does not incorporate the directivity of the individual 

elements). Z>(0,(t>;0o,(|>o) is normalised so that £>(0o,(j)o;0o,(|)o)= 1. We therefore have 

D(9,(t);0o,(t)o)=^o(r)/^o(ro), where r = (r,Q,§) is taken on the sphere r = r0. Both 

numerator and denominator can be written out using the smoothed version of Equation 
(3.8). In the denominator, we have, from the normalisation (2.8), 

\w{R)g{R)d2R = ^wn=N (3.22) 

We therefore have, using (3.13), 

D{e,bQ0,<b0)=N-'jexp[-j2nK2R]M>{R)g{R)d2R (3.23) 

or equivalently (see Eqns 3.8,3.12), 

D{Q,W0,$O)=N-
]
G

W
{K2) (3.24) 
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Consider the directivity for a target at broadside, D(Q,§), defined by 

Z)(9, <|>) = D{u, v) = D(u, v; 0,0) = D(Q, <$>; 0, e) (3.25) 

where the value of £ is arbitrary. Define 

K^r'^v) (3.26) 

Then we have, from (3.24), (3.15) and the definitions (3.25) and (3.26), 

D(Q,Q>)=N-
,
G

W
(K]) (3.27) 

From (3.23) and (3.15),  D(u, v; u0, v0) depends on its four arguments only through the 

differences u - u0 and v - v0; therefore 

D(u,v;u0,v0)=D(u-u0,v-v0) (3.28) 

Note that the PSFs (3.12) and (3.18) likewise depend on the four directional coordinates only 
through u — u0 and v - v0. 

The results (3.23) and (3.28) are of course not new; they pertain to the far field. What is 
new is that these same directivities pertain also to the near field, since (3.18) and (3.27) show 
that, on the sphere r = r0, 

I0(r)=NDra0HcD(u-u0,v-v0) (3.29) 

The conditions on this result, and likewise on the 'fundamental' result (3.18), consist of three 
requirements as follows: 

(i)        the image point lies on (or very near) the sphere r = r0; 

(ii)       the toneburst parameters satisfy (3.17) (For a more general £, this condition is 

replaced by B « fc, as discussed below.); and 

(iii)      conditions (i) to (iii) in (3.4) hold.14 

We note here the changes that must be made in the key results, (3.18) and (3.29), when a 
more general signal £ is used in place of a toneburst. The 'more general' £ discussed has 

carrier frequency fc and satisfies Equations (4.4) and (4.5). These specified changes will be 

obtained in Section 4 but they are stated here for completeness.   First we deal with the 

14 Recall that Equation (3.4) gives the conditions for the far-field expression to be accurate. Condition 
(iv) is here dropped from (3.4) since the tighter condition r = r0 has already been imposed. 
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changes in the results themselves: essentially15 the changes consist of simply replacing / 

throughout by fc and X by Xc = c/fc . Second, we deal with the conditions of validity, i.e. 

we specify the changes in the three conditions, (i) to (iii), on (3.18) and (3.29). Conditions (i) 
and (iii) are unaltered. Condition (ii) is replaced16 by B« fc, where B is the bandwidth. 

For future use, we evaluate the integral of the squared directivity: 

\\D(U-U0,V-V0)| dudv= \\D(U,V)\ dudv 

= N-2jpw(K2)\2dudv (3.30) 

= l]N->j\G«(K2)\2d% 

Here, in the obtaining of the second and third lines, (3.27) and (3.15) have been used. (The 
mathematics of the 'element' du dv in Equation 3.30 is discussed in Appendix B.) Parseval's 
theorem (equality of the 'energy' integral in the Fourier-transformed space and in the non- 
transformed space) then yields 

j\D{u-u0,v-v0)\2dudv = 'k2
cN-2l\gw(R)]2d2R (3.31) 

(absolute value signs being removed on the right-hand side of Eqn 3.31, since g(R) and 

w(R) are real). For the case where there is no shading of any kind (i.e. g(R) and w(R) 
uniform within the aperture), from (3.19), Equation (3.31) becomes 

j\D(u-u0,v-v0)\2dudv = l2
c/Sap (3.32) 

Equation (3.31) may be written in another way by introducing a slwding correction factor Q: 
this alternative form is described in Appendix B. 

15 Some of the replacements to be made in (3.18) and (3.29) are implicit rather than explicit. Thus 
replacements are to be made in Equations (3.13) and (3.15) that support Equation (3.18); and the 
directivity to be used in (3.29) is to be evaluated at fc. 

16 This is also a necessary condition, since only then will the directivity D(Q, (|)) be essentially the same 

(having essentially the same first few nodes) for all Fourier components of £(/). 
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3.3 Two Special Apertures 

We mention two special apertures for which the directivity, given by (3.27), or by (3.23) with 
K, in place of K2, comes out to a fairly simple expression. In both, the array is centred on 
the transmitter. The first is the circular aperture (uniform and unweighted, i.e. no shading of 
any kind) of diameter D. The directivity is 

D(Q,<\>)=2J](x)/x (3.33) 

where ./, is a Bessel function and 

izDsinQ    KD 
x = x x V«2+v2 (3.34) 

as given for example by Clay and Medwin [1977, p. 144], Ziomek [1985, p. 80] and Urick 
[1983, p. 59]. 

The second is the rectangular aperture (uniform and unweighted) having dimensions in 
the x and y directions equal to Lx and Ly respectively. The directivity [Clay and Medwin 

1977, p. 144; Ziomek 1985, p. 74] is 

(L u\ 
D(u,v)= sine —i— sine 

V X ) 

L.v 
(3.35) 

where  sine* = sin(7ix)/7tx.    From (3.33) and (3.35), the respective PSFs on the sphere 
through the point target can immediately be written down using (3.29). 

4. The Three-Dimensional Point Spread Function 

We now turn to the case where r is displaced in an arbitrary direction from the position r0 of 

the point target: the displacement has a component in the range direction as well as in the 
angular directions. 

4.1 Calculation under Special Conditions 

As an introduction for the reader that finds a concrete example illuminating, we first do the 
calculation for a special case involving a circular aperture.17 The special case is specified as 
follows: (i) the signal is a toneburst (short, uncorrelated) given by (3.6); (ii) the receiver is an 
aperture that is circular, of diameter D, centred on the transmitter, and unshaded; and (iii) 
the target is at broadside. The calculation itself is given in Appendix C. 

17 The reader is however warned that the calculation turns out to be at least as lengthy as that for the 
general case, given in Section 4.2. 
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The result for the point spread function is 

A0 (r) = NDr Ga0H exp 7'4rc-(r-r0) rect 
2(r-r0) 

cT 

2J,(x) 
(4.1) 

where x is given by (3.34). In (4.1) the overbar on AQ(r) is actually not necessary-for an 

aperture. However by inserting the overbar we obtain a result that is valid also for a circular 
array provided that it is unshaded in any way. The conditions on the result (4.1) are those 
already imposed in Sections 2 and 3 (together with (i) to (iii) in the paragraph above). 

Note that the result (4.1) may be rewritten as 

4,(r)=M)rüa0//l; ~(r-r0) 
c 

D(u-u0,v-v0) (4.2) 

from (3.6) and (3.33). We shall find that this result, obtained subject to the restrictions (i), (ii) 
and (iii), holds much more generally. 

4.2 Calculation for General Case 

We now give a treatment paralleling that of Section 4.1 but without making any of the 
assumptions (i) to (iii). In particular, we consider a more general signal £,{t). As a 

preliminary, for a general signal £(/) (uncorrelated, i.e. short pulse), we define the effective 
pulse length as 

Te=j%(t)\2dt (4-3) 
The normalisation of t,, given below (2.2), makes this definition reasonable. Note that the 
definition agrees with the actual pulse length T in the case of a rectangular pulse (3.6). 

The more general ^ that we consider is a sinusoid (carrier frequency fc) multiplied by a 

slowly-varying envelope. Specifically, let 

Zfy) = t,(t)e™' (4.4) 

where £,v{t), the complex envelope, is taken to have almost all of its energy contained in 

frequency components that satisfy 

/ < VTe (4.5) 

(Thus £,(t) itself has almost all of its energy concentrated in |/-/t.| < l/Te .)   This is an 

important and relevant case; for example, it includes the linear chirp after dechirping 
(discussion of such decoded signals is however postponed to Section 5.3). 
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We now impose the condition 

B«fc (4-6) 

on the beamwidth B; we saw below (3.29) that this condition is required.  In the sense (4.6) 
the signal is narrowband. Now the 'uncertainty principle' tells us that 

BTe > 1 

This equation entails that under the condition (4.6) we also have 

fX»l (4.7) 
We return to Equation (3.5), which continues to give the PSF in the 3-D case. In (3.5), we 

first replace the summation with an integral over R as in (3.8), but for the more general £ 

(4.4). Then the term ~(f-r0)-R occurring in the argument of |v (but not in the carrier) 

may be dropped, for the following reason. Because r is within the first few angular 
sidelobes, this term is less than or of order Xc, where Xc = c/fc. Thus in (3.5), the second 

term (after the removal of the square brackets) is less than or of order l//f . Recall that we 

imposed the condition (4.7) (indirectly). Then the reason why the second term can be 
dropped is that, in the time interval l//c, £v cannot change significantly. This in turn is 

because, from (4.5), there are no Fourier components of sufficiently high frequency to 
produce a difference. This dropping of the second term is the generalisation of the dropping 
of the second term in E3 that occurred in Section 4.1. Note that the condition (4.6) replaces 

the condition (3.17) in the case of the more general £. 

The expression for A0 (r) then reduces to 

A0(r)=Dra0Hc$ 
c 

|exp w(R)g(R)d2R (4.8) 

This is identical to the on-sphere (and toneburst) expression (3.8), except that (i) the factor 
£,[2(r-r0)/c] has been inserted, and (ii) Xc has replaced X. Therefore the rest of the 

argument in Section 3.2 again applies. Consequently we may immediately generalise 
Equations (3.12), (3.18) and (3.29) for the PSF to the 3-D case. The latter two yield 

A0(r)=Dra0Hc^ 
c 

G
M
(K2) (4.9) 

A0(r)=NDra0Ho^ Hr-r0) 
c 

D{u-u0,v-v0) (4.10) 
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where it is understood that K2 in (4.9), and D in (4.10), are to be evaluated at the carrier 

frequency fc. All three restrictions at the start of Section 4.1 have been removed. 

It is interesting that, under the rather general conditions considered, the image amplitude 
turns out to be separable: it is the product of a factor that depends only on the ranges and a 
factor that depends only on the angular coordinates. 

The conditions on the results (4.9) and (4.10) consist of two only, as follows: 

(i)        the condition (4.6) on the bandwidth; and 

(ii)       the conditions (i) to (iv) in (3.4) (i.e the conditions for the 'far-field' expression or 
'close-to-target' approximation to hold). 

4.3 Conditions for 'Area under the Curve' 

It is of interest to know the conditions under which the expressions (4.9) and (4.10) are 

accurate over a region that covers nearly all the 'area' under the curve of the PSF \A0 (r)|   of 

the smoothed array, so that the integral over all space is given accurately. (Because the 
region is three-dimensional, the 'area' is actually a 4-D entity.) In respect of the integration 
over the angular coordinates, Equation (3.4) (i) ensures that the first few sidelobes are given 
accurately, and hence that the integral to infinity is given to a good approximation (for A0, 

not necessarily A0). Therefore we need only consider the range direction. For that direction, 

from simple speed-of-sound considerations, (for a short pulse) the sidelobes extend over 

\r~ro\    < cTe 

For a correct 'area,' it is required that this region lies within the region of validity (3.4)(iv). 
For r0 in the near field (r0 < L2/'kc ), this implies that a sufficient condition is 

cTe«Xc{r0/Lf 

i.e. l/Te»fc{L/rJ (4.11) 

For most waveforms used, the uncertainty principle BTe > 1 can be replaced by BTe ~ 1, so 

the condition (4.11) takes the form18 

18 For the reflectivity experiment, we can be more precise. As discussed at (3.4), it appears that a more 
precise statement of (3.4)(iv)(a) is 

\r-r0\«jK{ro/LT 
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B»fc{L/rJ (4.12) 

For r0 in the far field (r0 » L2/Xc), the condition (4.11) is replaced by 

1/7; > cXjL2 (4.13) 

and the condition (4.12) is replaced by 

B > cXjl? (4.14) 

The conditions for (4.9) and (4.10) to correctly give the 'area' are therefore threefold: 
(i)        condition (4.6); 

(ii)       conditions (i) to (iii) (not (iv)) in (3.4); and 

(iii)      condition (4.11), or (4.13) if r0 is in the far field. 

4.4 Inclination Effects 

When the point target position r0 is changed from broadside to some other direction from 

the array, the point spread function varies in a simple way described below. The form of this 
variation is well known for the far field, but is repeated here because of its greater generality. 

The reader is asked to think of the PSF as a graph of A„ versus r at constant range r = rQ, 

that is, a graph versus 6 and <|>. The graph is therefore a surface; it has a strong peak at r0. 

From (4.10), the PSF has the same peak value as if the target were at broadside. However, the 
shape of the graph is altered. Because u and v are not linearly related to angle traversed, the 
graph is stretclied laterally in tlie direction of increasing 0. In fact, from (3.14) and (4.10), the 
angular beamwidth becomes greater by a factor 

1/cos 60 

than at broadside. In the direction of increasing 0 there is no stretching; the angular 
beamwidth in the (J) direction is the same as at broadside. These results hold subject to the 
conditions applicable to (4.10) and stated at that point; note that the target need not be in the 
far field. 

A chirp was used. As will be shown in Section 5.3, it is appropriate to consider, in place of £(/), the 
chirp after dechirping. The envelope of the latter approximates to a sine function and it is readily 
shown that the value of \r - r01 at half peak intensity of the image is about 

\r-r0\ = c/4B 

These last two equations imply that (4.12) should be replaced by 

B»±fc{L/r0f 
In the reflectivity experiment, the latter condition in fact holds. 
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As is known from the far field, these results can be interpreted by saying that the array 
may be replaced by its projection onto a plane perpendicular to the radius vector to the 
target point. 

5. Extensions of the Model 

The experimental arrangement in the reflectivity experiment differs from the 'restricted basic 
model' of Section 2.2 in three ways.19 To deal with the arrangement, the following three 
restrictions must be removed: (i) the use of a transmitter that lies in the plane of the array; 
(ii) the use of a point transmitter; and (iii) the restriction to a non-correlated signal. This 
work is done in the present section, resulting in expressions for the voltage streams and the 
point spread function that hold more generally. This work lays the foundation for Section 
8.5, where it is shown that the integral relationship, if it holds for the model of Section 2.2, 
also holds when the three extensions are made. The latter result is necessary in order for the 
experiment to be analysed by the proposed method. 

5.1 Transmitter Not in the Receiver Array Plane 

We now deal with a (point) transmitter located away from the plane of the receiver array. 
We again require the transmitter to be fairly close to the array; specifically, we again impose 
the condition (2.9), where rc — r, is now a 3-D vector. We develop the theory of this more 
general situation up to a certain point. We then make a comparison with the situation— 
already treated in Sections 2 to 4—in which the transmitter is moved to coincide with the 
array centre (i.e. the situation r, = rc). The comparison shows that 'little has changed.' 

For convenience we make a comparison between the situation 'transmitter at any location' 
(to be represented by the super- or subscript TAany) and the situation 'transmitter at centre 
of array' (represented by TACA). If displacement from the centre of the array is found to 
make no difference to the results of interest, then our proof is complete: the choice of the 
centre as the reference state is only for convenience. The details of the derivation and 
comparison are given in Appendix D. The comparison leads (subject to certain conditions) to 
two main results. The first main result is that the two voltage streams are related by 

E:*-*(f)=E™i-c-% -r,|-|r0 -rc|)] (5.1) 

Thus the displacement of the transmitter produces no other effect on the voltage stream 
En (t) than a time shift. Furthermore this time shift is independent of n. 

The second main result is that the two PSFs are related by 

19 This is apart from the possibility that the target may not be adequately represented by a collection of 
point scatterers. 
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k(r)]TAan =k(r)]TACAxe>* (5.2) 

where <|) is real.    Thus tiie intensity PSF |^0(r)|    is undianged by ilie displacement of tlw 

transmitter. 

The conditions required for the two main results are given in Appendix D.   Of these 
conditions, Equation (D.12) is the one of most interest. 

Appendix D also estimates the magnitude of the phase shift $ introduced into A0 (r). 

5.2 Spherical Transmitter 

Consider the effects of replacing a point transmitter (located at r = r,) with a spherical 

transmitter having the same centre. Consider a point target at r0. Potentially the voltage 

stream En (/) is altered in four ways. The first effect is through the numerator b in Equation 

(2.1). As discussed below (2.10), this factor has no effect provided that, when comparing a 
spherical transmitter to a point transmitter, we always compare two transmitters that have 
the same value of the product bp0. It will be assumed that this is done when writing 

equations such as (5.6) below. Second, there is the correction term b in the denominator of 
(2.1), associated with spherical spreading. This may be ignored provided we impose 

b « r0 (5.3) 

Third, there is the & in the attenuation factor in (2.6). This occurrence of b can be ignored 
provided we impose 

±ab«\ (5.4) 
This condition is similar to the second condition imposed at (2.15). Fourth, there is the b in 
the argument of ptTax in Equation (2.6), reflecting the travel time across the radius. Of the 

four effects, this one alone survives. Thus the term + b/c must be inserted into the argument 
of Z, . For an arbitrary origin, from (2.11) or (D.3), we therefore have for the voltage stream 

E„ (0 = Dra0Hdn $ - c-] (|r0 - r, | + |r0 - r„| - b)] (5.5) 

Thus we have 

Er(t)=Er{t + c^b) (5.6) 

Here ST and PT refer to the spherical transmitter and point transmitter respectively (both 
centred at r,). 
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When the image is formed via Equation (2.7), the term b introduced there exactly cancels 
that in (5.6), with the result that 

4T(r)=4T(r) (5.7) 

Thus the two images of a point target are the same.20 

Furthermore, due to superposition, the results (5.6) and (5.7) also hold for a collection of 
point targets (in which case Eqn 5.7 would of course be written without the zero subscripts). 

5.3 Correlated Signal 

It is common, as in the reflectivity experiment, to use a coded or chirped signal. This implies 
that, in the signal processing, each voltage stream is crosscorrelated with a replica of the 
transmitted signal; the resulting voltage streams are used in place of the original ones in 
image-forming. Let us take the dechirped voltage to be 

\*;{t')E(t' + i)dt' 
Ecor (A = JS   W    "V 1_ (5.8) 

Then, due to the linearity of the system, E™ (t) is the voltage that would have been obtained 

had the initial normalised signal been, not Qt), but 

Y(t)=3    I     \ (5.9) 
\W)\2df 

That is, it is just as though the transmitted pressure in (2.2) had been p0Y(t). Results for all 

derived quantities can be made correct for a correlated signal by replacing % by Y. Thus we have 

^cor(0=k(Ointermsof^ 
r l (5.1U) 

AC0T (r) = [Au (r)in terms of $\^Y 

Here cor means 'after crosscorrelation,' while u (for uncorrelated) means 'calculated without 
crosscorrelation.' The subscript £ -» Y means that i; is to be replaced by Y. These results 
apply even for complex targets. For a point target, the square brackets in (5.10) are given by 
(2.11) and (2.16) respectively (for a point transmitter at the array centre).  Note that Y(t) is 

20 This holds provided that the two transmitters being compared are at the same point (same centre). 
If we compare with a transmitter at the array centre, then, as Section 5.1 shows, we are limited to 
saying that the absolute values of the image amplitudes are equal. 
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normalised in the same way as £(/), since (i) F(0) = 1 and (ii) the latter is the maximum 

value achieved by |r(/)j (compare Eqn 2.3 and the discussion at Eqn 2.2). 

The effective pulse length of the correlated pulse is defined as 

Ter=j\Y(t)\2dt (5.11) 

and in practice is much shorter than Te defined by (4.3). Concerning bandwidth, in the case 

of a correlated signal, we do not impose (4.5) as it stands. Instead, let 

Y(t)=Yr{t)ex2*f<' (5.12) 

Then we take Yv(t), the complex envelope of Y(t), to have almost all its energy contained in 

frequency components that satisfy 

/ < VTn (5.13) 

In summary, in any result for uncorrelated signals that contains £(/), £,,(/) or Te, those 

quantities should be replaced by Y(t), Yr(t) and Ter respectively, in order for the result to 

apply to correlated signals. 

Clearly the procedures of Sections 5.1, 5.2 and 5.3 may be combined to yield the modified 
PSF in the case where the transmitter is not at the array centre or even in the array plane, the 
transmitter is a sphere rather than a point, while at the same time the signal may be 
correlated. 

6. Image of a Small, Smooth Ball 

An understanding of the smooth ball target is needed for calibration in the reflectivity 
experiment. While some rather general theory is developed in this section, the results from it 
that are needed for the experiment are twofold. First, under a certain condition, given by 
Equation (6.15) below, the ball may be treated as a point scatterer located on the ball's 
surface. The location of the point may be taken at any reasonably chosen 'centre' of the 
points of reflection of rays from the transmitter that go on to reach the array. The 'point 
scatterer' condition is satisfied in the experiment. The second result is that the equivalent 
point reflector has a target strength given by a0 = a/2 (Eqn 6.18), where a is the radius of 

the ball. This relationship is in agreement with a well-known result. 

The focus in Sections 6.1 and 6.2 is on developing equations describing the system of 
sonar plus ball under the principal condition X « a. Section 6.1 treats reflection from the 
ball under this condition, which permits the use of geometrical acoustics. Section 6.2 brings 
in the rest of the measurement system—considerations of the pressure field and the 
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transducers. The treatment to the end of Section 6.2 is a 'non-point treatment/ referring to 
the fact that, while the condition a«r0 is imposed at this stage, we do not yet restrict a to 

even lower values, as is required in order to treat the ball as a point. Section 6.3 imposes an 
appropriate further condition in order to justify the treatment of the ball as a point scatterer. 

6.1 Reflection from the Ball: Geometrical Acoustics 

Consider a spherical target of radius a. Under the short wavelength condition 

I« a (6.1) 

geometrical acoustics, i.e. a ray treatment, is valid.21 The precise limitation on X/a may be 
discerned from Morse and Ingard [1968, p. 419]. From their equation that follows (8.2.3), at 

large values of a/A the total scattering cross section is Ina1, where the difference from the 

geometrical cross section Kaz is explained in Morse and Ingard. The graph in their Figure 4 

suggests that this asymptotic value, llta1, is attained to a good approximation for 

27ra/A>20,i.e.for 

X/a<n/10 (6.2) 

We impose this condition and apply geometrical acoustics. In the reflectivity experiment 
A ~ 0.5 mm, so the geometrical acoustics condition on a is a > 1.5 mm. Since a ~ 5 mm, the 
condition is well satisfied. 

The ball is assumed to have a high acoustic impedance relative to the water, so that to a 
good approximation all the incident energy is reflected. Then from geometrical acoustics we 
have that the incident and scattered acoustic intensities, Iin and / respectively, are related 

by 

I = Iina
2/4R2 (6.3) 

the scattering being isotropic.22 (Here/ is measured at distance R from the centre of the 
ball). Strictly this result does not hold at finite distances R, since reflection occurs at the ball's 
surface, not at its centre. However Equation (6.3) will accurately represent intensity as a 
function of the scattering angle provided 

R » a (6.4) 

21 This is true except near the forward direction—a complication that need not concern us (see Grandy 
[2000, pp. 33,42]). 
22 Strictly speaking, geometrical acoustics does not tell the whole story. For the monofrequency case, 
when J is considered as a function of the scattering angle, superposed on the omnidirectional term in 
the intensity, i.e. the right-hand side of (6.3), is a rapidly fluctuating term of similar size that averages 
to zero [Morse and Ingard 1968, Eqn 8.1.4]. However, these fluctuations are removed if the spread of 
frequencies is sufficiently large. In the present experiment, it is estimated that the fluctuations are 
largely removed. We shall ignore the small correction due to the remaining fluctuations. In the 
'energy conservation' relationship (8.3), it may be that the remaining fluctuations are equivalent to a 
small additional departure of the ratio cr/o"^ from unity. 
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Let r, and r„ be the locations of the transmitter centre (radius = b) and the nth element 

respectively. By tracing the appropriate ray, we now obtain the outward and return path 
lengths, rm and rret =rretn respectively, for a ray specified by (r,,r„). Let 

R, = r0 - r,    and   Rr = r0 - r„ (6.5) 

denote the vectors to the centre of the ball (at r0) from the transmitter centre and the receiver 

element respectively. Let 2y„ be the angle between the vectors R, and Rr (see Fig. 5).  In 

accordance with (6.4) we impose the condition that the various ranges23 are large compared 
to the radius a: 

r0 » a (6.6) 

23 Besides (6.6) it is understood that b, r(  and L are all small compared to r0.   The latter three 
conditions are introduced formally below (6.9). 

34 



DSTO-TN-0417 

S(rn) 

Figure 5: Geometry for reflection from ball. T=splierical centre of transmitter. S=receiving element. 
Each of tlie four angles labelled with a dot equals yn, at least approximately, because tlie 

ball is small. Tlie bisector BD passes extremely close to N, tlie midpoint ofTS. Section 6.3 
considers tlie special case xuliere S is at rc, tlie centre of tlie array; tlien BD passes 

extremely close to \ (r, +rc). 

We first write a rather complex formula for the angle yn by applying the sine rule to the 

triangle formed by the transmitter centre, the element and the ball centre: 

sin 2y„     sin(R,, r„ - r,) _ sin(R,., r, - r„) 

r — r R, R, 
(6.7) 
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Here (A,B) means the angle between the vectors A and B. This pair of equalities actually 

gives two expressions for sin 2y„. The formula is exact; it does not rely on (6.6). It will be 

simplified below. 

The path lengths can be shown to be 

'out = R, -b -acosY„ + (a2/2Rr)sin2 y„ + • • • 

rret = Rr - acosy„ + (a2/2R, )sin2 y„ + ■ • ■ 
(6.8) 

where our main interest will be in the terms up to and including the cosine. We now show 
how to derive that part of the two expansions. Subject to (6.6), the ray from the transmitter 
that is reflected to the receiver from the ball's surface may be assumed parallel to the line 
from the transmitter to the centre of the ball. It follows, by ray geometry, that (i) the angle of 
incidence of the ray that is reflected to the receiver element is yn; (ii) hence the angle of 

reflection is also y„; and (iii) the path lengths are given by the terms in (6.8) up to and 

including the cosine term. 

For the more complete expansion (6.8), the derivation proceeds by writing down several 
equations for the exact geometry instead of invoking (6.6). Then, the solution for roul and rret 

can be developed in ascending powers of a/Rt and a/Rr . The resulting expansion, to one 

'extra' term, is (6.8). 

6.2 The Ball in the Context of the Imaging System 

We now combine the geometrical acoustics with considerations of the pressure field to 
obtain formulae which, in principle, give the voltage stream and the image amplitude. From 
(6.3), the complex pressures are related by \p\ = \pin | a/2R . By the same argument as used to 

derive Equation (2.5), we obtain, for the voltage produced at the nth element, 

E,M)=Dr(5np^ 
r    +r 
'out      ret n bD. 

Jrou\ + "  ^rretn 

exp —( "I 
~ V   out ""ret» / (6.9) 

Here Drn = Dr has been assumed independent of n. 

We allow the transmitter to be away from the array plane and the transmitter to be a 
sphere instead of a point. We note that certain approximations can be made, similar to those 
in Sections 2 and 5. Thus, first, we impose conditions on the attenuation coefficient a as 
follows: the two conditions in (D.l); the condition (D.2); and the condition (5.4). Second, we 
impose conditions concerned with spherical spreading as follows: L « r0 (first equation in 

2.14); |r, -rc.|<}Z (Eqn 2.9); and b«r0 (Eqn 5.3).   (Note that a « r0 has already been 

imposed at Eqn 6.6). With the use also of (2.2), Equation (6.9) becomes 

r:    2 
an )^-c-1(rout+rret„)] (6.10) 
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Here 

'ou.+>"**„ =|r0-r,| + |r0-r„|-ö-2acosY„ (6.11) 

Under the conditions stated, the equation (6.7) giving y„ may be simplified to 

2y„    = sin(r0,r„-r,) 

it being noted that sin2yn ~2yn since y„ is small. 

Actually, while the sine-squared terms in (6.8) are small relative to r0, or even relative to 

a, it is not necessarily valid to drop them. This is because, to drop them in a 'phase' context, 
we need them to be small on the scale of a wavelength. The test is as follows: when the 
expressions (6.8) are substituted into the argument of \ in (6.10), the sum of the two sine- 
squared terms must be small compared to a quarter-wavelength at the central frequency, 
namely Xc /4. The condition for this turns out to be 

-A^«K (6-13) 

In the case of the reflectivity experiment, the ratio of the left- to the right-hand side comes 

out to be 4.4 x 10"4, so that the condition is very easily satisfied. 
We shall not proceed further with the mathematics of the 'general' or non-point case, 

except to point out the following feature of the ball reflector. A given element essentially 
receives its acoustic energy from one small region of the ball's surface —a different region for 
each element. Thus tliere is a correlation between tlte element and tlie region (say S) of reflection. 

In the next section we shall specialise to the case in which the region S on the surface 
moves so little when we switch from one extreme sensor element to another that the sphere 
is equivalent to a point scatterer. In that case the above correlation disappears. It should be 
noted that Equations (6.10) to (6.12) are not restricted to this 'point scatterer' case, which 
requires a small radius satisfying condition (6.15) below. The Equations (6.10) to (6.12) apply 
to somewhat larger spheres, still satisfying a « r0 but not requiring (6.15). 

6.3 Treatment of Ball as a Point Scatterer 

We derive the condition under which the sphere is equivalent to a point scatterer. Let T (at 
r,) be the location of the transmitter centre, C (at rc.) be the central point of the receiving 

array, and let B (at r0) be the ball's centre.   Note that the transmitter is allowed to be 
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anywhere subject to the conditions given in Section 5.1. Consider the point A that 
geometrically reflects the ray from the transmitter to C. To a sufficient approximation, the 
location of A may be written as24 

(r.+r,)/2-r0 
rA=ro+au\L      I (6-14) 

Because the choice of this location A on the surface has been based on the central point of the 
array, it gives the best single-point representation of the sphere. 

The condition under which a point target at this location is an adequate representation of 
the sphere is found in Appendix E. The condition comes out to be 

l^L/rJ «Xc (6-15) 

Here L is the maximum dimension of the array (measured diagonally in the case of a 
rectangular array).25 

It is of interest to compare (6.15) with the condition a « r0 already imposed at Equation 

(6.6). Provided the ball is in the near field (in the sense r0 « L2!/X,c, i.e. with no dependence 

on the angle 0O of the ball away from broadside), the new condition (6.15), which may be 
rewritten as 

a « r0 °- 
L2/K 

is more restrictive than the old condition a « r0.   Thus the making of the point scattering 

approximation requires the ball to be smaller (i.e. smaller than a « r0 requires). 

In the reflectivity experiment, near-field conditions apply. Also, in (6.15,) the ratio of the 
left-hand side to the right-hand side comes out to be 0.11, so that the condition (6.15) for the 
point scatterer treatment is satisfied. 

We proceed to obtain the expression for the voltage stream En (t). We may take the path 

to be always via A, so that in (6.10), 

24 To obtain (6.14), note that the coefficient of a is a unit vector. An exact equation would have here a 
vector lying along the line BAP through B and A that bisects the angle TAC. Because the angle TAC is 
small, to a good approximation BAP passes through the point j (r, + rt.); whence the result. 
25 In the case of a non-broadside location combined with an array that has two characteristic lengths 
(Lx and Ly say), it may be possible to replace (6.15) by a somewhat weaker condition. 
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''out +rKtn=\rA-r,\-b + \rA -r„| (6.16) 

The result for En (t) for the ball is thus given by substituting (6.16) into (6.10). Now compare 

this with the result for En (/) for a point target, given26 by substituting (2.13) into (5.5). The 

expressions differ only in two respects. First, rA replaces the general point target location as 

expected. Second, a/2 replaces a0. Thus the equivalent target strength of the sphere of 

radius a is 

a0=a/2 (6.17) 

This result agrees with the usual result for the target strength of a sphere (Urick 1983, p. 303). 

We have found that, under stated conditions, the ball is equivalent to a point target with 
the position and target strength as stated. It follows that the image ^(r) is centred at A and 

is the same as for a point target of strength a0 = a/2. 

Note that, if we choose the origin at y(r, + rc), then the position of A, given by Equation 

(6.14), simplifies to 

rA=(r0-ay0 (6.18) 

7. Image of a Rough, Flat Surface 

7.1 Incoherent Scattering from a Surface 

We define four quantities for acoustics by analogy with optics, in particular, radiometry. 
(For the optical/radiometric definitions, refer to Williams27 [1970, p. 22] or Jerlov [1976, pp. 4, 
9].) In this report, in the absence of any better names on offer, the relevant acoustic quantities 
are denoted by the optical terms (e.g. 'radiant flux'), but placed in inverted commas.28 For the 
symbol of an acoustic quantity, the standard optical symbol is used, but with a prime added 
to signify the acoustic quantity (e.g. F' for 'radiant flux'). 

The quantities are as follows. 

26 The origin is arbitrary for both results for En(t). 
27 Regarding radiance, the reader should ignore Figure 9 of Williams; for corroboration of this 
statement, see Jerlov [1976] or another text. 
28 Note that in this report there is no weighting of the quantities according to the sensitivity of the ear 
or the eye, such as occurs in photometry. 
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• 'Radiant flux' F' is acoustic power (in watts). Usually it is the power crossing some area. 

• 'Radiant intensity' /'is the acoustic power emitted by a source, or by an element of a 

source, per unit solid angle (unit: Wsr"1). In general it depends on the direction from the 
source to the point of observation (directional source). 

• 'Irradiance' E'is the acoustic power received per unit area of the surface being ensonified 

(unit: Wm~2). Note that the area is of the element of surface itself; there is no projection 
onto a surface at right angles to the direction of energy flow. 

• Given a surface that reflects or emits sound, the 'radiance' L' received at a point from a 
point on the surface is defined thus: V is the acoustic power received per unit solid 
angle from unit projected area of the surface. The projection is onto a plane at right angles 
to the line joining the one point to the other (direction of flow).29 The unit of V is 

Wm-2sr-'. 

We also introduce the usual acoustic intensity, denoted by I (without a prime). I is a vector 
with its direction in the direction of energy flow. Its magnitude is the power crossing unit 
area, where that area is at right angles to the direction of energy flow [Morse and Ingard 
1968, p. 249]. 

By definition, a uniformly diffusing surface is a surface for which, no matter from which 
direction it is ensonified, the 'radiance' of the surface (due to the reflected radiation) is the 
same in all directions. We shall refer to a surface as 'white', or acoustically white, if it is 
uniformly diffusing and it reflects all the acoustic energy that falls on it (thus no energy is 
absorbed or transmitted). As shown in the text by Longhurst [1957], the total 'radiant flux' 
radiated by a uniformly diffusing surface element dS is given in terms of the 'radiance' V 
of the surface element by 

dF' = nL'dS (7.1) 

Now suppose an acoustic intensity 7in falls upon a 'white', flat surface of area S, with 
angle of incidence i. Then the 'radiant flux' reaching the surface is 

F^I^Scosi (7.2) 

29 The 'radiant flux' from an element of surface dA into an element of solid angle dQ may be written 
as 

dF' = L'dSdQ 

where dS = dA COS 0 is an element of projected area. The existence of two independent elements, 
dA and dQ., can cause confusion, connected with the question of which of these two elements is to 
be made to approach zero the fastest. Here one should think of the element of area dA as very small, 
and the element of solid angle dQ. as merely small. By this we mean that dA is to be so small as to 
be pointlike in comparison with the spherical cap of a 'cone' opening out at dQ from dA and capped 
at the point of observation. 
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The 'radiant flux' reflected from S may, from (7.1), be written in terms of the 'radiance' l! by 
F' = KL'S . Also, since the surface is 'white,' we have F' = F^. These last two equations 

may be combined with (7.2) to yield for the 'radiance' 

Z' = Jt_14cos/ (7.3) 

For an acoustic system, the reflection coefficient of a surface [Meyer and Neumann 1972] 
is defined as the fraction of the incident sound energy that is reflected. This definition is not 
adequate in the angle-dependent case. We now generalise to this case. Let the incoming 
sound have angle of incidence i. After reflection, consider the 'radiance' L'(R,g) produced 
in a particular direction, to be called the direction of the reflected ray. This direction may be 
specified by two angles: (i) the angle of reflection R, and (ii) the angle between the plane of 
incidence and the plane of reflection,30 to be called g. Then we define the reflection coefficient 
p (i, R, g) as the extra factor that must be inserted into the right-hand side of (7.3) to convert 
the 'radiance' of a 'white' surface into the actual 'radiance': 

L'(R,g)=nlIinp(i,R,g)cosi (7.4) 

Note that (7.4) enables us to distinguish between 'diffuse' reflection (p having a wide spread 
over R and g) and 'specular' reflection (p being sharply peaked in R and g). 

From the definitions we note that, for the reflected beam in the direction {R, g) at distance 

r, the 'radiant flux' through an element of solid angle dQ, is 

F' = L'Scos RdQ 

provided that r is large compared to the linear size of the reflecting surface. But this 'radiant 
flux' is also related to the acoustic intensity I by 

F' = Ir2dQ. 

Therefore the acoustic intensity is given by 

I = ^ScosR; (7.5) 

and so, from (7.4), 

30 The angle of reflection is the angle between the reflected ray and the normal to the surface. The 
plane of reflection is the plane containing both the reflected ray and the normal. 
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1 =—if-Spcos/costf (7.6) 
K r 

The key equation (7.4) defining the reflection coefficient is based on energy flows only and 
ignores the phase of the acoustic wave. The concept of energy flows combining incoherently 

will be used explicitly in Section 7.2.  (This happens at Eqn 7.15, where the intensities |^v| 

are combined without regard to phase.) Yet for a perfect specular reflector, the reflected rays 
have definite phase relationships with each other. This raises the question of whether, as the 
surface approaches the condition of perfect specularity, the treatment breaks down, due to 
the collection of waves having coherence properties. We have not been able to settle this 
question one way or the other, and leave it as an open question. The present treatment will 
be based on Equation (7.4). 

7.2 Scattering in the Context of the Imaging System 

We consider a small, flat target satisfying the model of Section 7.1 and forming part of the 
imaging system of the basic model (Section 2). We first write 7, the reflected acoustic 
intensity measured at the receiving array, in terms of 7^, the 'radiant intensity' emitted at 

the transmitter surface along the axis of the beam pattern. Let Dt, a, rout and rret be defined 

as in Section 2.1, rout now being measured to the centre of the reflecting surface, and rret 

being measured from that centre to the centre of the receiving array. Then from the 
definitions, the acoustic intensity received at the target is 

Im=^ß-cxp(-arout) (7.7) 
r~ 
'out 

where D, is evaluated in the direction of the centre of the target. Here attenuation has been 

taken into account. Here and below, the approximations made in Section 2.2 are again made, 
the conditions of validity being as before. 

On the reflected side, 1 is given by an equation slightly modified from (7.6): 

I = —!r S p cos / cos R exp(- a rrel) (7.8) 

(see Fig. 6 below). Combining this with (7.7), we obtain 

/ = LllfS-Sp cos/ cosR exp[- a(roul + rM )] (7.9) 
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For Equations (7.7) to (7.9) to be valid, we require 

M«rout,       M«rret    and   L«rKt (7.10) 

Here M and L are the maximum dimensions of the target and array respectively. These 
conditions ensure the constancy of the incident acoustic intensity and angle of incidence over 
the target, and similarly for the reflected beam.31 

We now relate I and l'bm to pressure, and hence also to the voltage stream En(t). As a 

result, as in Section 2, we relate En (t) to the pressure at the transmitter.  First, in a general 

travelling wave we have for the acoustic intensity 

I = \p\2/2Z (7.11) 

where Z is the acoustic impedance. The factor 2 arises because p = p(t) in (7.11) is the 
analytic signal. Here I is taken to be the acoustic intensity averaged over one cycle. Hence, 
in the context of the signal £,(t), I is still time-dependent, but on a time-scale large compared 

tO l//c • 

We first apply (7.11) at the transmitter. From (2.2) and the fact that 1^ =b2ItTaii (7trax 

being the acoustic intensity measured at the surface of the transmitter on the axis), we have 

KJt)=(2ZyPlb%t)\2 (7.12) 

We now deal with the nth receiving element. We have, from (2.4) and (7.11), 

\E„(?)\2=2ZDttl(f) (7.13) 

At this stage we must recognise that in nonsteady conditions (such as in the reflectivity 
experiment), a time-delay must be incorporated onto Equation (7.9). Consider first the case 
where both the surface S and the array are pointlike, so that the travel times are unique. 
Then in (7.9), I and 7t'rax should be written as 

31 Regarding these constancies, see also: (i) the comments below (1.1), including the footnote, and (ii) 
the text at Equation (1.4). 
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respectively.   With this understanding, when (7.12) is substituted into (7.9) and the result 
into (7.13), one obtains, for a surface characterised by a reflection coefficient p (/, R, g): 

fc(')f = (Dro„Hfn^Sp cost cosR |$y[/ -c"1 (rout +rret )]|2 (7.14) 

Here H is given by (2.13) and Equation (4.4) has been used to replace t, by £v. 

Up to now it has appeared that we may take account of the nonzero size of the flat 
reflecting surface by simply replacing dS by S. However the introduction of a time- 
dependent signal of amplitude cjv means that signals of different amplitude may be reaching 

different parts of the surface at the same time. In that case, Equation (7.14) requires 
modification as follows. In the delay, in (7.14), rout + rrel is replaced by 

routS +rretS,n 

where, for example, the return path depends both on n and on the position of the point of 
reflection on the surface, this position being formally represented by S. Then in place of 
(7.14) we get 

\EM =(DranHfn-1 jpcosicosR ^.[/-c^,, +rmSJ]fdS (7.15) 

Here the main purpose in writing the result as an integral has been to deal with the time 
dependence. However at the same time, let us choose (if only temporarily) to make the 
formula (7.15) more accurate by allowing i, R and p = p(/, R, g) to depend on both32 S and n. 

In Section 8.7, the summed integral of (7.15), which is relevant to the integral relationship 
and to the analysis of the experiment, will be evaluated, subject to certain approximations. 

32 The conditions of validity given by (7.10) are still required however, so that the spherical spreading 
factors may be taken as constant over the target and also over the receiving array. This prompts the 
question: Why bother taking account of the dependence of p on S, when the condition of validity for 
taking p = const, is also Equation (7.10)? The answer is that the error in the ' p' approximation 

depends also on the shape of the 'curve' p(i,R,g). As a result, the relative error in the 'p' 
approximation is sometimes far greater than the relative error in taking the spreading factor to be 
constant. 
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8. The Proposed Integral Relationship 

8.1 Overview 

For any target (not necessarily a point), the image amplitude A(r) is determined by the 

received voltage streams E„ (/) according to Equation (2.7). Consider the following two 

integral expressions: 

■WX"-&(0f<ft (81) 
n 

In (8.1), the integral is over all times at which returns from the transmitted pulse concerned 
are being received. In (8.2), 6 is measured from broadside. As discussed in Section 3.2.2, the 
writing of A in place of A effectively means that the contributions of distant sidelobes in 
A{r) are to be ignored. It is conjectured that the ratio Jf/Ja is a 'constant,' independent of 
'almost everything.' The value of the constant is found in Appendix F, in which, for the 
special case of a point target in the restricted basic, or unextended, model of Section 2.2: (i) it 
is shown that J, /Ja is indeed a constant, and (ii) the value of the constant is found to be the 

right-hand side of (8.3). Inserting that value, we have as the conjectured general relationship, 

J„     2 

f - V  f|r(R)]v* 
rms j wl 

where g w (R) is defined in Section 3.2.2. (As Appendix F shows, the right-hand side of Eqn 
8.3 may be written in several alternative forms.) Equation (8.3) will be called the integral 
relationship or the 'energy conservation' relationship. In the case of an array that is not shaded 
in any way (wn = 1, g(R) given by Eqn 3.19), this relation reduces to 

J„     2 

< -  V N7C- 

rms j Sap 
(8.4) 

The remaining subsections are arranged as follows. Sections 8.2, 8.3 and 8.4 are like an 
executive summary; while the detailed calculations are given in Sections 8.5 to 8.7 and the 
associated appendices. Section 8.2 gives the physical ideas behind the proposed relationship, 
in particular the parallel with true energy conservation for wave propagation. Section 8.3 
discusses problems faced in making the extension from normal energy conservation to the 
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desired 'energy conservation' relationship. Section 8.4 summarises progress in establishing 
the desired relationship and gives the present status of that work. 

Section 8.5 shows that, when the model of Section 2.2 is extended in the three ways 
discussed in Section 5, the integral relation continues to hold for a point target. Section 8.6 
extends this result to a small, smooth ball. Section 8.7 relates the integral relation to a rough 
surface, but no proof is offered in that case. 

8.2   The Parallel between the Integral Relationship and Energy 
Conservation 

We now explain the ideas behind the proposed relationship between Ju (a sum-and-integral 

of the squared voltages) and J, (an integral of the squared image amplitudes). Consider 

first Ja, and for a start consider the unweighted case wn = 1. Then Ja is proportional to the 

electrical energy produced in the receiving array by the pulse33 (the subscript a is for 'array'). 
From (2.7), we may also say that Jais proportional to tlie energy input into tlw image 

reconstruction process. In the weighted case, it is not immediately clear whether, in seeking a 
relationship between Ja and Jl, we should seek one that has En weighted by the factor w* 

(as in Eqn 8.1) or simply wn . We have chosen \\>l, because Equation (2.7) seems to imply 

unambiguously that the weighting process is equivalent to replacing every voltage En(t) 

with w„E„(t). 

In regard to Jjt let us define a 'corrected' image intensity \A(r)\ r~2 cosG. The correction 

factor r~~ cos0 may be argued for on simple geometrical grounds.34 In the final analysis, 
that correction factor is needed so as to make the integral (8.2) for a point target independent 
of the position at which the target is placed. Then Jt is the volume integral of the corrected 

intensity. Ji may be thought of as tlie total 'energy' in tlie image (the subscript / is for 

'image'). 

The proposed relationship parallels to some extent results in wave theory (in particular, 
acoustic or electromagnetic waves). For simplicity we consider the monofrequency case. 
Suppose there are several interfering waves. The intensity (acoustic or electromagnetic) at a 

33 Strictly, Ju is proportional to the energy that would be produced if the voltage from every element 
were fed into a resistance of 1 ohm. Since only the voltage, not the current, is used in image-forming, 
the actual value of the resistance does not matter. 
34 Given that the image-forming process (2.7) contains no spherical spreading factor, the factor r'1 

seems eminently reasonable as a correction factor. The factor COS 6 comes from the last line of (B.2); it 
could be regarded either as a correction to the intensity or as a correction to the volume element. In 
the case of a point target, the factor COS 9 is associated with the stretching factor l/cos 60 that is 
applied to the PSF, discussed in Section 4.4. 
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given point is increased or decreased according to whether constructive or destructive 
interference has occurred. Nevertheless, in the context of an integration of the intensity over 
an effectively infinite surface, tlie constructive and destructive effects cancel. That is, the integral, 
say K, of intensity is the same as would be calculated from the sum of the integrals due to 
the various constituent waves treated individually. This is the first result. Second, if each 
individual wave can be attributed to a separate source, the said integral, K, equals the sum of 
the powers from the sources. These two results must hold, from energy conservation. 

In the parallel, Ja is effectively the total 'energy' injected into the image; while J,, the 

total 'energy' in the image, would be proportional to it. Different relative phasings of the 
voltage streams is „(f) at the various elements would lead to different patterns of 

constructive interference in the image, but would not affect the image's total 'energy' J,. 

The same basic idea was used by Tsao [1986] (described in Steinberg and Subbaram [1991, 
p. 259]) in proposing an 'energy conservation principle.' His principle was put to a quite 
different use, namely the choice of optimum array weights in a radar system. His 'basic idea' 
was reported by Steinberg and Subbaram as follows: 'Using Parceval's theorem, he [Tsao] 
argued that the total image energy, being equal to tlie total signal energy in tlie aperture, was 
independent of the distortion [due for example to a turbulent medium] and therefore 
independent of the distribution of the image energy in the image plane' (italics added). 

8.3 Problems in Extending to the Desired 'Energy Conservation' 
Relationship 

There appear to be three problems facing an attempt to 'extend' the result for waves to the 
desired result for image-forming (in the case of a general target).  These three problems, to 
which a fourth will be added below, are as follows. 
Problem 1. No wave propagates physically from the source; instead, an image is formed in 

software according to (2.7). However, let us for the moment put aside the problem that 
the image-forming is based on txoo-ivay propagation—recognised below as Problem 2. 
Then we have a passive system (one-way propagation). Then it can be shown 
(Appendix G) that the image-forming equation is, in a sense, equivalent to physical 
backpropagation—the time reverse of normal propagation. True energy conservation 
applies to the latter. This suggests that the real difficulties He only with Problems 2 
onward. 

Problem 2. The source of 'backpropagated waves' is not the receiving array, but some 
combination of the transmitter with the receiving array. This is seen from the delays 
applied to En in Equation (2.7). This 'combining' adds considerable complexity. 

Problem 3. Unlike the continuous-wave cases envisaged in Section 8.2, the 'backpropagated 
wave' generated by each stream En(t) is a pulse or a superposition of pulses. 

Associated with this difference is a further difference: from (8.2), the proposed result is 
concerned with an integral, not over a surface, but over the entire volume. 
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These three problems are obstacles in the way of a proof of the integral relationship (8.3); 
but they do not rule out such a relationship. 

A (r) was defined earlier (Section 3.2.2) as the image that would have been obtained if a 

smootlted element density g(R) had been used. If one attempts to estimate A(r) from A(r) 

by simple means, apparently the only means available is to use the fact that A (r) is the result 

of taking the true image amplitude A(r) and ignoring the contributions of the distant 

sidelobes (a recipe that admittedly does not fully pin down A(r)). That recipe is adequate 
for a point target, as discussed in Section 3.2.2; it is also adequate for a collection of a few well- 
separated point targets. However for closely spaced point targets, or for an extended body, a 
problem arises —a problem different in kind to the three listed above. (In what follows we 
use the term 'clutter' to mean the contribution of the distant sidelobes.) 

Problem 4. For non-simple targets, such as a collection of point scatterers whose FSFs 
overlap, it is not immediately clear what the clutter is. This is basically because, at the 
one location r, there can coexist the main lobe from one target and clutter from another 
target. Thus it is not clear how to calculate the integral Jl (Eqn 8.2). 

This fourth problem—at least if it is valid to model every scene by a collection of point 
scatterers —does not so much threaten to invalidate the relation (8.3) as to limit its 
application. To apply the integral relation to a system (as in Section 9) requires that one be 
able to estimate the clutter and then subtract it off. 

Actually such estimation may be possible. First, for a relatively simple system, such as the 
arrangement of two rectangular targets discussed in Section 9, it may be possible to estimate 
the clutter without a complex calculation. Second, for a complex system, presumably one 
could proceed by treating the image as a collection of PSFs. Then one could subtract off the 
clutter by applying the CLEAN algorithm used in radio astronomy [Hogbom 1974; Clark 
1980] and used more recently in radar imaging [Steinberg and Subbaram 1991]. 

8.4 Status of the General Proof of the Integral Relationship 

As was seen in Section 8.3, the proof of the 'energy conservation' relation faces problems. 
Work (not presented here) is under way to deal with these. First, the relation is being tried 
out in test cases. A test case of particular interest involves reflection from an acoustic plane 
mirror —actually, a 1-D mirror in a 2-D acoustic system. This test case has considerable 
significance, as it is quite different from a point scatterer: it involves not only reflection from 
many points but the presence of coherence between these reflections. It is found that the 
relationship passes the test: J i jJa has the same value as for a single point scatterer in a 2-D 

system. Second, a general argument is being sought to establish the integral relationship. 
Some progress has been made in this area. 

Note that the work of Tsao referred to in Section 8.2 makes it very likely that the basic 
idea of 'energy conservation' is correct. 

A further point needs to be made. The immediate aim of this work on developing an 
'energy conservation' relation is to analyse the results of the reflectivity experiment. The 
relevant steps in the analysis are: (i) to compare the reflections from two rectangular surfaces 
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('plates') to obtain ratios of reflection coefficients, and (ii) to calibrate, using a smooth ball 
target, to obtain absolute reflection coefficients. Consider step (i). Various ratios have been 
proposed as the key to the reflectivity ratio. These proposals involve, first, the question of 
how one should perform spatial averaging in order to improve the statistics. In particular, 
there is the question of whether, over the volume around the plate surface, one should 
combine (by addition) the image amplitudes A(r) themselves or their squares. Second, the 
proposals involve whether, to obtain a quantity proportional to the reflection coefficient, one 
(i) simply looks for the maximum of A{r) as a function of n, the coordinate normal to the 
plate surface, or (ii) takes an integral over n, as the integral relation given by (8.2) and (8.3) 
implies. Third, the proposals involve whether, when comparing two plates inclined at 
different angles, some correction factor such as cos/ or cosi? (Section 7) needs to be 
inserted. In opting for a particular answer to these questions, it is jar better to choose an option 
that has some theoretical backing tlmn to select an answer on no basis at all. Therefore at this stage 
there are pragmatic grounds for basing the analysis on the 'energy conservation' relation. 
How the integral relation answers these questions will be seen in Section 9. 

8.5 Integral Relationship for the Extended Model 

In Section 5, we introduced three extensions to the restricted basic model of Section 2.2— 
extensions needed so as to cover the arrangement of the reflectivity experiment. It was 
shown in Section 8.1 (Appendix F) that the integral relationship holds for a point scatterer in 
the original, unextended model. We now show that if the model is extended in any of the 
three ways —separately or together—the integral relationship continues to hold for a point 
scatterer. The proof is given in Appendix H. 

8.6 Integral Relation for a Small, Smooth Ball 

From Section 6.3, a smooth ball is equivalent to a point target located at (6.14) and having 
target strength (6.17), provided the ball is small enough to satisfy (6.15). Hence the integral 
relationship (8.3), including all the extensions discussed in Section 8.5, hold for the ball target 
as well. 

8.7 Integral Relation for a Rough Surface 

The rough surface was treated in Section 7. For such a surface the integral relationship (8.3) 
will not be proved. That relationship will however be assumed in Section 9 as a basis for 
analysing the data of the reflectivity experiment. The primary purpose of the present Section 
8.7 is to evaluate Ja, one of the two factors that occur in the integral relationship. The value 

of J, then follows automatically once the integral relationship is accepted. 
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The calculation of Ja is performed in Appendix I, where it is found that 

Ja = (D.c^HfT^SpcosicosR^w; (8.5) 

Appendix I also gives the conditions needed for this result to hold. The appendix also shows 
that, in certain more general circumstances, the measurement described in Section 9 yields a 
certain average reflection coefficient. 

9. Application to 'Reflectivity' Experiment 

We now show how the integral relation, argued for in Section 8, may be used in the analysis 
of the DSTO/TUS/University of Sydney reflectivity experiment.35 

9.1 Comparison of Plates 

As discussed in Section 8.4, it is preferable to base the estimation of reflection coefficients on 
the integral relation, which has some theoretical basis, than on an assumption with no basis. 
An example of an assumption of the latter kind is that the peak of the image intensity over n 
(where n is the coordinate perpendicular to the plate) is proportional to the reflection 
coefficient, with a constant of proportionality that is independent of the angle of incidence. 
Essentially, that example assumes that the peak intensity, as opposed to some spatial integral 
of it, is a measure of the reflection coefficient. 

The integral relationship proposed in Section 8 is applied as follows.   When two of the 
planar targets are compared in a single image (see Fig. 6), from (8.3) and (8.5) we have36 

(-/,), _ (Ja\ _ VAD^HYSpcosicosR^wl}^ 

(J\     («U      [Te{DrGmsH)2SpcosicosRj,y„l 

Here p and s are the two targets, while the subscript p, for example, means 'evaluated for 
target p.' s means the 'standard' target, while p represents the variable target, which will be 

35 Certain complications occurring in the experimental results-speckle, clutter and instrumental 
noise—are not discussed here. 
36 Since A\r), not A(r), appears in J, in (9.1) and (8.2), it is assumed that the analysis involves a 
preliminary stage in which the clutter is estimated and then subtracted off. 
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called the 'object' target. Recall that p is the reflection coefficient at the combination of angles 

(i,R,g) concerned.37 

■R-i 

Figure 6: Comparison of plates in tlie reflectivity experiment. Transmitter, S=typical receiver 
element, i=angle of incidence, R=angle of reflection. We Imve -R~i, because 
TS ~ L« range. (We write minus R, because +R = i would correspond to a specular 
reflection.) 

37 For maximum accuracy the angles are determined by the ray travelling to the centre of the plate and 
thence to the centre of the array. 
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Consider the first equality of (9.1): it requires a supporting argument because, in the first 
instance, Section 8 says only that the equality applies when each of p and s is a complete scene. 
We wish to apply the equality when p and s are two targets forming part of one total scene. 
Consider first an uncorrelated (i.e. non-chirp) signal. Suppose that the return signals from p 
and s arrive at the receiving array in two time intervals that do not overlap. (This means 
essentially that the two targets do not overlap in range, and moreover are separated by at 
least a few range resolution lengths.) Then the value of Ja (integrated only over the times 

relevant to p) is the same as if p were the only target present.38 

We now turn to J,. Under the above circumstances, it should also be true that the image 

of each target is unaffected by the presence of the other target. Thus the value of J, for p, for 

example, integrated over just the region of p (plus near sidelobes) should be the same as if p 
were the only target present. Then the first equality in (9.1) holds for the two co-present 
targets. The last expression in (9.1) is obtained immediately from (8.5). 

Second, consider a correlated signal. At first sight this case is problematic because, in the 
experiment, the chirp length cT far exceeds the size (in range) of the plates. But because the 
whole system for propagation is linear, we are assured that the experimental results are the 
same as if a signal Y{t) had been transmitted. Thus, consider the case, as in the experiment, 
where the dechirped return signals from p and s arrive at the receiving array in two non- 
overlapping time intervals (same as in the argument above regarding Ja and J,, but now 

with the qualification 'dechirped').  Then the whole argument goes through as before, and 
(9.1) is shown to hold. 

For many of the factors in the last expression of (9.1), the corresponding factors in the 
numerator and the denominator are equal and cancel, because both refer to the same 
image—for example Te and ^ w2

n .   For a number of other factors, it is not too bad an 

approximation to again equate the respective quantities, though we can improve on that 
approximation if required. Applying equality to such pairs as seems reasonable, we obtain 

(J,)P = [SpcosicosR]p 

(j,)v     [Spcos/cosi?], 

Here the targets have been taken to be sufficiently near broadside so that the two values of 
Dr may be taken as equal; this is well justified in the experiment. 

We now turn to the left-hand side of (9.2), given by (8.2). If the plate is large enough, the 
image intensity (at least if smoothed) should be constant over the plate.39 Consequently 
(and treating 6 and r as constants), from (8.2) we have, on the left-hand side of (9.2), 

38 Of course it is required also that there is negligible scattering from one target to the other and no 
'shadowing.' 
39 The deviations from constancy should be of three types. First, there are diffraction effects at the 
edges. These should become relatively small when the plate becomes large. (In any case, probably a 
better approach to dealing with edge effects is to apply 'energy conservation' to a portion of the plate 
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(j^=[sr-2cos6j|4r)|V| 

where n is the coordinate normal to the plate. The analogous result holds for (j, )s. 

These results are then substituted in (9.2). Then, letting, for example, rp be the range of 

target p, when we put rp ~rs, cos Qp ~ cos Qs, and also40 (as in the experiment) Rp ~ -ip, 

Rs « —is, Equation (9.2) becomes 

[j\A(r)\2dn]      -   _2 

[j\A(r)\2dn] 

p„cos  ln 
L-LP L (9.3) 

P.cos is 

Hence, from the experimental data, the ratio of the reflection coefficients can be determined. 
Then if the absolute reflection coefficient p ^ of the standard plate is known, the coefficient p^ 

of the object plate is immediately determined. The calibration of the standard plate required 
for this step is discussed in the next Section 9.2. 

Note that in practice, to reduce the effects of noise to a minimum (as discussed in Section 
1.1), each of the two line integrals in (9.3) would be replaced by a volume integral. This 
replacement would be achieved by performing an extra surface integration, by summing 
(parallel to the plate's surface) over voxels, but ending the integration before reaching voxels 
close to the edge of the plate. 

9.2 Calibration 

For the ball (label b), we have the following comparison with the standard plate (label s). 
From (8.5), (F.l), (6.18) and Section 8.6, we obtain 

(^),_(^),_M)27i"l5pcosfcos4 (94) 
(•U     Mt [(DrH a/2)2 p]b 

tlmt does not approach tlie edges.) Second, in the coherent case, constructive interference and destructive 
interference occur in different parts of the plate reflector, giving rise to speckle. Third, in the 
incoherent case, spatial fluctuations in the reflected intensity also occur due to the changing geometry, 
that is, due to the fact that the pattern of peaks and valleys varies from one part of the surface to 
another. (Perhaps this phenomenon is on a continuum with speckle.) In regard to the second and 
third phenomena, as the plate becomes large the image intensity becomes uniform in a coarse-grained 
sense. 
40 The experimental condition is not the condition for specular reflection. Rather, the pair of minus 
signs means that the experiment is approximately monostatic. 
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Here pb, the reflection coefficient of the ball, is normally put equal to unity for a calibration; 

we now take this step.    Then, when the same approximations are made as with the 
comparison of two plates, the equation becomes 

(jtl JSpcos2i]s 

GU=   4a/2f (9"5) 

On   the   left-hand   side,   putting   rs~rb,   cos6v~cos6,,   and,   as   in   Section   9.1, 

approximating [ J |^(i*)| dV\  by S times a 1-D integral, we obtain 

p. cos*/, Kv s (9.6) 
[j\A(r)\2dn\ 

[j\A{r)\2dv\ "  <a/2) 

By using (9.6) and then (9.3), the absolute reflection coefficients are obtained, first for the 
standard target and then for all the object targets. (This statement is subject to the possible 
limitation mentioned in Section 7.1 concerning the smoother targets that may lead to 
coherent reflection). 

10. Conclusion 

The present work has been motivated by an experiment to measure the acoustic reflection 
coefficient of surfaces as a function of roughness and angle of incidence, with emphasis on 
the diffuse or nonspecular component. Consideration of how to analyse this experiment has 
led to the proposing of an integral relationship or 'energy conservation' relationship. In 
order to make this relationship plausible, it has been necessary to derive a number of results. 
These comprise the formulae for the 3-D image due to a point target, a small, smooth ball 
and a flat surface that reflects incoherently. 

In regard to the point target, formulae for the image (point spread function) have been 
obtained under fairly general conditions. These include near field conditions. To increase 
generality, allowance has been made for a transmitter displaced in an arbitrary direction 
from the centre of the array, a spherical rather than a point transmitter, and a correlated 
(chirp) signal. 

In regard to both the point target and the other targets, the conditions of validity for the 
formulae for the image have been carefully stated. If the conditions (mostly of the form 
f « g) are well met, the predictions hold with high accuracy. More common is the case 

where at least one of the conditions f « g holds only to a borderline degree. In such cases 
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some predictions hold with only moderate accuracy. A common example concerns results 
that hold out to several sidelobes from the centre when the conditions are well met: when the 
conditions hold less well, these results often become semiquantitative outside the main lobe. 

The integral relationship proposed is similar to the energy conservation relation in 
diffraction theory. The reasons have been given why that true energy conservation principle 
cannot be straightforwardly extended to obtain the desired relationship. Arguments have 
been presented which, though they do not amount to a proof, show the plausibility of the 
proposed integral relationship. Work is in hand which attempts to find a general proof. 

Finally it has been shown how the integral relationship would be applied in the analysis 
of the experiment to produce the reflection coefficients. 
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Appendix A:   Shaded Arrays 

As mentioned in Section 3.2.3, three cases are to be discussed, each involving a different kind 
of element shading. The cases are as follows. Case (i): The density of elements varies (but 
not too rapidly) over the aperture. Case (ii): Shading (weighting) is applied to the array 
during the image-forming, usually in software. Case (iii): The element strength (sensitivity) 
is itself shaded over the aperture. 

In case (i), the theory is already covered by Sections 3.2.1 and 3.2.2 with the introduction 
of g(R) above (3.18); W(R) is put equal to unity. 

The obtaining of g(R) from g(R) by smoothing can be discussed in more detail, as 
follows. The smoothing is performed over a distance much greater than the separation of the 
elements, but much less than the size of the aperture. One procedure we may adopt -the 
crudest procedure-is to subdivide the aperture into distinct 'smoothing regions.' For each 
R, one then takes a mean over the smoothing region containing R. Thus 

Here the superscript 1 refers to the smoothing region; Sl is its area and TV' the number of 
elements in the region. Thus, as expected, f(R) comes out to be an estimate-somewhat 

crude-of the local element density. An alternative procedure for obtaining g(R) from 

g(R) is to remove the higher spatial frequency components from g(R). 

Case (ii) is dealt with by the factor w„ or w(R)in (2.7). It remains to remark that because 

the multiplicative combination w(R)f(R) appears (implicitly) in (3.18), then the following 

holds. Suppose that initially there is an unweighted array ( W(R) = const.) with a uniform 

distribution of elements (g(R)= const.). Then the effect of introducing a given weighting 

VC(R)= W0(R) is the same as the effect of introducing an identical shading in the number 

density, i.e. the effect of putting g(R) °= w0 (R). 

Case (iii) requires a modification of the model of Section 2. The shading factor in the 
physical element strength, say sn or s(r„), is to be superposed multiplicatively on the 

distribution of G discussed below Equation (2.16). Thus the physical element strength is 
snO„, where sn varies smoothly with position and o„ still has the properties given below 

Equation (2.16). Thus sn should be inserted on the right-hand side of (2.4), but Equation 

(2.7) remains as written. As far as the calculation of A0 (r) is concerned, the introduction of 

the strength shading s„ is equivalent to the application of a weight w„ <* s„ during image- 

forming (in the case where the array initially has w„ = const). Therefore the theory of 

Sections 3.2.1 and 3.2.2 (in particular, Eqn 3.18 with S(R) replacing W(R)) covers this case 

also. 
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Appendix B: Integral of the Squared Directivity 

Here remarks are made in respect of two aspects of the integral (3.30).  First, note that in 
Equation (3.30), the 'element' du dv is not equal to the element of solid angle, which is 

dQ = sine dQ <# (B.1) 

The relation between dudv and dQdfy is given by the Jacobian J as follows: 

dudv = JdQd§ = dQdty 
du/dQ   du/dty 

dv/dQ   dv/dty 

= sine cos QdQdty (B.2) 

dudv = cosQdQ, 

where (3.14) and (B.l) have been used. 

Second, Equation (3.31), giving the value of the integral, may be written in another way 
by introducing a slwding correction factor Q: 

Q=    rf   , x ; 1—^i (B.3) 

where all integrals are over the aperture. Q is independent of the magnitude of both Sap and 

N, and depends only on the shape of the distribution g w (R) (and the shape of the aperture). 
Then from (3.31) and the normalisation (2.8), we have 

j\D(u-uQ,v-v0)\2dudv = ^Q (B.4) 

where Q-\ for an unshaded array (i.e. gw(R) = const.).  The general inequality Q> 1 in 
(B.3) follows immediately from the Cauchy-Schwarz inequality, which states that 

|J/HMJ>MD>N 
where the region R may have any number of dimensions but lies in a space of real variables 
only. 
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Appendix C:   Detailed Calculation of a Point Spread 
Function 

The case considered is specified by (i), (ii) and (iii) of Section 4.1. To treat this 3-D situation, 
we must go back to Equation (3.5) rather than Equation (3.8), since r*rQ and so the rect 

factor must be retained. Using assumptions (i) and (ii) and using (3.9), we obtain from (3.5) 

A0{r)=Dra0HGJexp yfcw rect 
cT 

!(R)<*2R 

where 

C(R)=2(r-r0)-(f-f0).R 

(C.1) 

(C.2) 

In (C.1), from (3.19), g(R) is equal to AN/TZD
2
 for R in the circular region X2 + Y2 < (D/2)2 

and zero outside (see Fig. 5). 
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Aperture 

Figure 7: Geometry for calculating beam pattern of a circular aperture. Tlie point target (U) is at 
broadside. Tlie image point ] 1ms coordinates (r,0,O) or (x,0,z). A typical receiving 

point S lias coordinates (R,§') or (X,Y). 
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We now invoke assumption (iii) to obtain 

— _ 4iV 
A0(r)=Dra0Hc-^exp 

with 

.471/ x 
2KD/2 

Jjexp 
-10   0 

.2n    . , 
- j—/csinecoscj) 

A 
KCt[E3]RdRdty' 

(C.3) 

E^~[2{r-r0)-RsmQcos^] 
cT 

Here the target at r0 has a 6 coordinate of 0, the image point is at (r,0,(f>), where we have 

put (() = 0 due to the symmetry of the problem. The receiving point R has been represented 

in polar coordinates by (R,(J)'). 

Now the two transition points for the rect function are given by 

2{r-r0)-RsmQcos^ = ±UT (C.4) 

Let us determine the condition under which the second term on the left-hand side is always 
small compared to the right-hand side; under that condition we shall be justified in dropping 
the second term. For a sufficient condition, we may put R = D/2 and drop the cosine; we 

thus have 

DsinQ«cT (C.5) 

as the condition.  With the second term dropped, it is convenient to rewrite the integral in 
(C.3) — call it J— in Cartesian coordinates; thus 

/ = rect 
■<■>/ Yl   D/2   J(D/2f-X2 

2(-°>lj       J      exp 
cT 

■j—X sinG dYdX 
-D/2-J(D/2f-X: 

where R = (X, Y) (see Fig. 5). Note that it has been possible to take the rect function in front 

of the integral sign. The Y integral is now trivial, and the X integral may be performed with 
the aid of the tabulated integral [Gradshteyn and Ryzhik 1965, p. 321] 

v-l r2v-X 
J(l-x2)    e»'dx = ji -       T(v)Jv_y(ii) 
-i v^y 

which holds when the real part of V exceeds zero.   Here J is a Bessel function, T is the 

gamma function and r(4) = jyfü . (Before performing the integration, inside the integral we 
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may replace j by - j due to an antisymmetry with respect to X.) The result is Equation 
(4.1). 

The conditions imposed in Sections 2 and 3 have been augmented by Equation (C.5). That 
particular condition can be simplified. This is because our formulae for the PSF are only 
required to hold in the first few lobes; hence sin 6 < X/D. Hence a sufficient condition is 

D(l/D)«cT,   i.e.   X«cT 

i.e. fT»1 (C.6) 

But recall that we have already imposed the condition fT » 1 at (3.17). Thus, without the 
imposition of any more conditions, the second term in (C.4) is negligible and our dropping of 
it is justified. 
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Appendix D: Derivation of Results for Transmitter Not in 
the Array Plane 

In this appendix, we take the origin to be at the centre of the receiving array, i.e. we put 
rc = 0. Consider the (point) transmitter to be at a location r, not necessarily in the array 

plane. For a point target, the voltage stream is obtained by an appropriate simplification of 
Equation (2.6) (p^ replaced by (2.2), b replaced by zero in two places). As in Section 2.2, we 

now (i) make the approximation that Drn = Dr is independent of n, and (ii) impose the 

condition r0 » L (as made in Eqn 2.14), so that the spherical spreading factor is simplified. 

We also impose essentially the conditions (2.15), associated with attenuation, in the form 

aL sin 60 «1   and   a|(r, )xy | sin 0O «1 (D.l) 

Here the subscript xy refers to the component of rr in the plane of the array (xy plane). 

Because r, may now lie out of that plane, a further condition is required in order to ensure 

that H (now defined with the new attenuation factor containing the more general r, in Eqn 

2.6, but reducing to Eqn 2.13) is independent of both n and the transmitter location. That 
further condition is found to be 

a|(rr).|cos0o«l (D.2) 

where the subscript z means perpendicular to the array plane. The spherical spreading 
factor simplifies because of Equation (2.9) and the condition r0 » L mentioned above. 

Hence the voltage stream becomes (in place of 2.11) 

En{t)=Dra0Haj[t-c-]{\r0-ri\ + \r0-rn\)] (D.3) 

Comparing (2.11), we see that we may also write 

ETy(?) = EJ,ACA [t-c-(|r0 -r,|-r0)] (D.4) 

When the convention rc = 0 for the origin is dropped, this equation becomes (5.1). 

From (2.7), we also have (in place of 2.18) 
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^0(r)=Dra0/fäX„w^[c-1(|r-r,|-|r0-r,| + |r-r„|-|r0-rn|)] (D.5) 

We shall show that, subject to certain conditions, 

[Ä(r)]TAany=[Ä(r)]TACAxe^ (D.6) 

where <|) is real (i.e. Eqn 5.2). <|) is equal to (|)2 in the relationship (D.10) below. 

To show (D.6), we have, in (D.5), the expansion 

|r-r,|-|r0-r,| = (r-r0)-(r-r0)-r, +•••; (D.7) 

this is the expansion to first order in r,, similar to an expansion in Section 3.1. Consequently, 

provided 

\(r-r0)-r,\«cTe (D.8) 

from the discussion at (4.4), we may write, with ()), and (j)2 real, 

cj(as in D.5) = £,, (as in D.5)x expO'^,) 

= ^v(asin2.18)xexp(;'(t)1) (D.9) 

= cj(as in 2.18)x exp(jty2) 

where41 

^«-^c-'Cr-fJ-r, (D.10) 

Since <|)2 is independent of n, when the last line of (D.9) is substituted in (D.5), exp(j§2) may 

be taken outside the summation. The result (D.6) follows with <|) = <|),. 

The condition (D.8) may be written more simply.  Since we are concerned only with the 
first few lobes, (D.8) becomes, as a sufficient condition, 

(XjLcosQjr, «cT (D.ll) 

41 Note that (D.10) holds in the sense that the ratio of the two sides is very close to unity (apart from 
unfavourable orientations of the vectors, when (() is small anyway).  It has not been shown that the 

difference between the two sides is small compared to 71/2 . 
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(Here we have assumed that the most unfavourable alignment occurs in the case where both 
r, and r - r0 lie in the plane of the arc of increasing 6.) Because we have imposed the 

condition (2.9), the sufficient condition reduces to 

/c7;cose0»l (D.12) 

Thus, in order for (D.6) to hold, a slightly strengthened version of the condition (4.7) is 

required.42 

Finally we discuss the magnitude of the phase shift <|> introduced into ^40(r). From 

(D.10), <|> is clearly zero when r is displaced from r0 along the range direction. It is of 

interest to estimate the phase change when the displacement is in the direction of increasing 

angle 8. Consider first the case where: (i) r, is in the xy plane, (ii) the broadside direction 

and the two vectors, rr and r0, lie in the same plane, and (iii) rt =\L. Then, when r has 

moved to the first node of the beam pattern, 

. ~    1       h,.     L      „ 
<)> = ±27C cos 90 

Xc Lcos60 2 

= ±7C 

Second, consider the case where: (i) r, is perpendicular to the xy plane, and (ii) rt =jL. 

Then, at the first node, we get 

(|) = +7itan0o 

42 Besides the conditions listed above in this appendix, there is a restriction required on the range 

difference, r — r0. It arises from the requirement that the second-order term in (D.7) must also be small 

compared to cTe. But this restriction turns out to be easily satisfied provided that the point r is in the 

first few range sidelobes. 
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Appendix E: Validity of Treating a Ball as a Point 
Scatterer 

We find the condition under which a point target at the location (6.14) is an adequate 
representation of the ball. Let C be the centre of the array and let T be the location of the 
point transmitter. As in Section 5.1, T may be in or out of the array plane. Then A (6.14) lies 
on the line joining B, the centre of the ball, to M, the midpoint of TC (see Fig. 8). Let S be the 
location of a typical receiver element, and let D be the point at which reflection to S truly 
occurs. To a sufficient approximation, D lies on the line BN, where N is the midpoint of TS. 
(Note that not all of the above points are coplanar.) Now in (6.10), En (/) is, in essence, 

sensitive only to the path length TDS. The point approximation replaces the path TDS with 
TAS. We require the difference between these to be small on a wavelength scale. 
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Figure 8: Validity of treating ball as a point scatterer. T=transmitter, C=centre of array, S=typical 
receiver element. M and N are midpoints ofTC, TS respectively. A and D are tlie points of 
intersection of tlie ball's surface with BM and BN respectively. To a sufficient 
approximation, reflection to S takes place at D; tlie point scatterer assumption takes this 
reflection to occur at A. B, A, M, N and D lie in a plane, but T, C and S normally do not 
lie in that plane. P is a typical point on tlie ellipsoid that lias foci at T and C and passes 
through A; E is tlie point wliere tlie ellipsoid meets BN. See text. 
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Now let P be a typical point on the ellipsoid (a surface of revolution) that has foci at T and 
C and passes through A. Then TP + PC is constant over the ellipsoid. Also, from Fermat's 
principle (stationary path principle) [Ditchburn 1952, p. 216], this ellipsoid is tangential to tlie 
ball at A. Let the ellipsoid intersect BDN at E. Then, within the approximations already 
made, the path difference is 

length TDS-length TAS = 2 (DE) (E.l) 

Now the radius of curvature of the ellipsoid at A is ~r0; this is much greater than the radius 

of the ball, a. Hence, in calculating DE, we may replace the ellipsoid with the tangent plane. 
From a theorem in geometry, 

AE2 = DE.EQ 

where Q is the intersection of NB with the ball on the opposite side of the ball to D. Thus 

DE « AD2/DQ (E.2) 

But by similar triangles, since a « r0, 

AD = (MN sin a)(a/r0) < \ (CS\a/r0) (E.3) 

where a is the angle NMB. A little thought shows that sin a = 1 is actually attained for 
some positions in the array (some orientations of CS) so that, for the worst position, '<' in 
(E.3) may be replaced by equality. At such orientations, consider extreme values of the 
element position S: at one extreme, CS = \L, so MN = jL. Combining this with Equations 

(E.2) and (E.3), we obtain 

DE 
2a 

\_a_ 

4rn 

V 
L = iia 'L^ 

vrv 
(E.4) 

For negligible error due to the altered path length, we require 

2(DE)«}XC 

This condition reduces to the final result (6.15). 
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Appendix F:  Proof of the Integral Relationship for a 
Point Target 

As stated before Equation (8.3), it will be shown that for a point target, the ratio JjJa is a 

constant, independent of the position (r0,60,(|)0) of the target and also independent of its 

strength a0.  In the process we evaluate Ja, J, and the ratio JjJa , obtaining the result 

(8.3). The derivation in this appendix is confined to the unextended model of Section 2.2. 

First we evaluate Ja for a point target by substituting (2.11) in (8.1), obtaining 

Ja = (Dra0Hf J5»„21 k[t -c-1 (r0 + |r0 -r„|)] fdt 
n 

By a translation of the variable of integration, the argument of £ may be replaced by simply 
t, and the integration is readily performed using (4.3). Then using (2.17), we obtain 

Ja^iP^^a.HfT^wl (F.l) 

Note that the response (F.l) of the array lias no cos#0 factor. This result may seem 

surprising. After all, each element presents to the rays returning from the target a projected 
area that is reduced (compared to broadside) by a factor cos60. However the reason why 

(F.l) is independent of 60 is that each element responds simply to the pressure on it, the full 

pressure being felt at each point on the surface regardless of the angle of incidence. This 
having been said, tltere is in general a fall-off of response with angle! But this fall-off is due to 
the presence of the directivity factor Dr in (F.l). 

We turn to the integral J,. From (8.2) and (4.10), we obtain 

J,=(M)räa0i/)
2J 

But from (B.2), an expression in (F.2) becomes 

"(r-r„) 
c 

\D(u-u0,v-v0)\2^d>r (F.2) 

cos0 ,3      cos6 ,   ,„     ,   7   , 
-a r = —T—drrdQ. = dr du dv 

r" r~ 

The range or r integral is now performed using (4.3), so that (F.2) becomes 

J, = (7VD,.öa0//)
2(c/2)rJ \D{u-u0,v-v0)\2dudv 
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Now, in the argument of D, u0 and v0 may be dropped.  This last integral is evaluated at 

(3.31) and (B.4), so that the final result for J, is 

\T c „,  X~. 
J^N2(Drca0H)2^-Te-^Q 

1       ^ap 

where Q is given by (B.3). 

From (F.l) and (F.3), the ratio Jr, jJa for a point target is 

(F.3) 

J„     2 

f    s    V,2 

rms  j 5ap     Z„M'« 
(F.4) 

This expression may be written in several alternative forms. First, using (B.3) for Q and 
Equation (3.22), we obtain43 the result, Equation (8.3), given in the main text. Further 
manipulation leads to 

J..     2 

< ö   ^ 

\      rms   i 

2
12 JM{R)r{R)g{R)d2R 

c    JM>{R)r(R)d2R 

On the right-hand side, the last ratio is seen as a particular weighted average value of g(R), 

the latter being the smoothed element density. The ratio is therefore of order N/Sa . 

Clearly if there is no shading of any kind (vi>„ = 1, g(R) given by Eqn 3.19), the ratio equals 

N/Sap and Equation (8.4) holds. Finally we may write 

J,.     2 

( Ü   V X2.N 

y     rms   I ap 

where P is of order unity and may be written as 

(F.5) 

P = 
{jd2R}{j[W(R)m(R)fd2R} 

{jg(R)d2R}{j[W(R)fg(R)d2R} 

43 Here and in the sequel, it is necessary, in an integral, to replace g{R) by g\R) or vice versa, in 
circumstances where this is an excellent approximation. 
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Appendix G:  Backpropagation 

Backpropagation has been reviewed by Maynard et al. [1985] and by Perez-Matzumoto et al. 
[1989]. The basic problem answered by backpropagation is as follows: Given the pressure 
field p(r',t) over a plane (r' = typical location on plane), reconstruct throughout a half-space 

the field p(r,t) that gave rise to it (see Fig. 9). The required formula, in the monofrequency 

case, is given by Sutton [1979]: 

if 
c 

je-1 2K fR 

pf{r) = ^-jcos(h,r-r')—-—pf(r')dS' (G.1) 

Here pf denotes the Fourier component of the pressure field (analytic signal) of frequency/, 

h is the outward unit normal to the receiving plane, (A,B) denotes the angle between 

vectors A and B, R = |r - rl and the integral is over the r' plane. The result (G.l) is subject 

to the condition that all the distances R involved are large compared to a wavelength. This is 
a very weak condition, easily satisfied in underwater acoustic imaging applications. 

P(r) 

Source of 
backpropagation 

Figure 9: Backpropagation.   Tlie pressure at P is to be expressed in terms of tlie pressures over tlie 
plane S' at later times. 
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Suppose now that we have a general pressure field (i.e. not necessarily monofrequency) 

p{r,t) = \pf{r)e^'df 

By forming the Fourier frequency integral of (G.l), we see that the result for p(r,t) is equal 

to a superposition of waves, R~] exp J2TI(KR + ft) (see integrand of Eqn G.l), each 

modulated by the slowly-varying cosine function of position. The signs preceding KR and 
ft tell us that the wave is a collapsing one and so the waves propagate backwards in time. 

The resulting formula for p(r,t) can be manipulated to yield the following more simple 
form 

p(r,0 = —fcosfor-r') — 
2TZC 

J R 

dp 

Bt 
dS' (G.2) 

r, l+li/c 

The evaluation at the advanced time t + R/c reflects the backward nature of the 
propagation. Equation (G.2) is the generalisation of (G.l) to the general or non- 
monofrequency case. 

Equation (G.2) bears a striking resemblance to the image-forming equation (2.7), despite 
the superficial differences. The resemblance is significant because, in (G.2), the 
backpropagated wave must obey true energy conservation. Let us see what differences, if 
any, between the two equations are truly 'essential.' 

The differences can be classified as follows. The first group of differences are somewhat 
trivial: the cosine factor, the l/R factor and the use of the time derivative. All these features 
in (G.2) can be matched by making the corresponding changes in the formula (2.7); and the 
images produced would be changed in only minor ways. Second, there are differences 
between, in (2.7), summing or integrating over an array (bounded in space, discrete elements) 
and, in (G.2), integrating over an effectively infinite, and continuous, surface. But an array 
has always been recognised as some kind of approximation to the full surface; the effects of 
the approximation, such as the nonzero beamwidth, are well known. Furthermore if one 
were to backpropagate from an array according to (G.2) but with obvious modifications, 
while there would be some blurring, etc. of the field, energy conservation would still hold. 
Hence this second group of differences is also unimportant in a sense. 

The third group consists of three differences: (i) backpropagation deals with a passive 
system, not a two-way system; (ii) the formula (G.2) gives a time-dependent quantity p(r,t), 

in contrast with the time-independent image amplitude A(r); and (iii) in (G.2) neither 
reflectors nor sources are assumed present. 

It will be argued that (ii) and (iii) flow logically from (i), as follows. In the two-way case, 
for a given position r, the time tu at which the pulse is transmitted leads to a definite time 

t0 + r-r,\c (G.3) 
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at which the reflected signal should be evaluated to obtain the image amplitude ^4(r). Such 
a definite time is missing in the passive case, where the times of emission from sources are in 
general not known. Thus the difference (ii) is a logical consequence of the difference (i), not 
an independent difference. We turn to the difference (iii). Here the presence of sources 
cannot be readily incorporated in the one-way case, for the very reason that there is no way 
to associate the value of r with a particular value of t. Again (iii) flows from (i). 

Thus, among all the three groups of differences, the only essential difference is beftueen a tioo- 
way and a one-way system. Then (Section 8.3) it is required to show that, in the one-way 
system, the image-forming procedure (2.7) is equivalent to physical backpropagation, as 
described by (G.2), apart from inessential differences. But this is what the discussion of 
differences has already shown. 
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Appendix H: Extension of Point-Target Proof to the 
Extended Model 

As stated in Section 8.5, the proof will now be extended. 

H.l.   Transmitter Not in Array Plane 

In Section 5.1 we considered the situation where the transmitter is displaced from the array 
plane. For convenience we took the state with the transmitter at the centre of the array as the 
basis for comparison; here we continue to do this. For a transmitter displaced from the 
centre, when (D.3) is substituted into the Equation (8.1) giving the array integral Ja, by 

translation of the variable of integration, it follows that Ja has the same value as for a non- 

displaced transmitter. Again, when (5.2) is substituted into (8.2) for the image integral J/, it 

follows immediately that Jj is unchanged by the displacement of the transmitter. Hence the 

ratio JjJa is unchanged. Hence the integral relationship (8.3) holds for the displaced 

transmitter as well as for the transmitter at the centre of the array—for a point target. This 
result is subject to the conditions given in Section 5.1. 

H.2.   Spherical Transmitter 

On this occasion it is worth considering a general scene, since Equations (5.6) and (5.7) 
continue to hold for such a scene. In (8.1), it follows immediately from (5.6) that Ja for a 

spherical transmitter has the same value as for a point transmitter at the same point. 
Similarly in (8.2), from (5.7), J. has the same value as for a point transmitter. Hence for a 

general scene we may say that the integral relationship (8.3) holds for a spherical transmitter 
if it holds for a point transmitter centred at tlie same point. 

We now want to drop the qualifying 'if' clause. To this end, let us restrict attention to a 
point target. Subject to the conditions in Section 5.1, the integral relation does indeed hold 
for the point transmitter at the same point—which need not be in the array plane (as we saw 
in Section H.l). Hence the integral relationship (8.3) indeed holds for a spherical transmitter. 
This result is subject to the conditions of Section 5.1; the latter may be dropped if the 
transmitter is in the array plane.44 

44 At this stage we can also say, for a collection of point targets, that the integral relationship holds for a 
spherical transmitter if it holds for a point transmitter, provided both are located in the array plane. 
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H.3.   Correlated Signal 

Again we consider first a general scene. As discussed in Section 5.3, given the scene and the 
non-waveform parameters, both the En(t) and A(r) are determined by £(/) in the 

uncorrelated case; in the correlated case they are determined via the same functional 
relationship but with Y(t) replacing £(/). This is true, not only of £„(/) and A(r), but also 

of Ja and Jt in Equations (8.1) and (8.2). Furthermore we have imposed the same condition 

(5.13) on Y(t) as on i,(t) (Eqn 4.4). Hence, if the integral relationship holds for an 
uncorrelated pulse, it also holds for a correlated one-this is for a general scene. 

For a point scatterer therefore, the integral relation does hold for a correlated pulse. 
When the extensions in Sections H.l and H.2 are also made, the conclusions given in those 
sections hold for correlated as well as uncorrelated signals. 
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Appendix I:   Calculation of Ja for a Rough Surface 

For a surface described by a reflection coefficient, it was shown in Section 7.2 that the 
squared modulus of the voltage stream is given by (7.15). Towards obtaining Ja (8.1), we 

note from (7.15) and (4.3) that 

j\E„(t)\2dt = (DrG„H)2Teit-' IpcosicosRdS (1.1) 

Note that the complications involving time delays drop out. We now assume that i, R and g 
in p(i,R,g) may be evaluated at the centre of S (for the given n); and we proceed similarly 
for the factors cos/ and cosR. In other words, p, cos? and cosi? are assumed to be 
constant over the surface S. The conditions for this assumption have already been imposed45 

at Equation (7.10). Consequently (1.1) becomes 

\\E„{t)\2dt = {Dra„H)2Ten-]Spn cos/cosi?,, (1.2) 

where the dependence of p and R on n has been retained and has been shown by means of 
subscripts. 

We now sum to obtain Ja (8.1). Since the array is small compared to the range, the 

relative variation in cosi?„ across the array is small, except when Rn is near 90°. We 

therefore put Rn = R, independent of n. Thus 

Ja = 2X JWOfa = (PramHfT.n-iS{cosicosR)J^w2
K p„ (1.3) 

n n 

In the experiment, the data from one geometrical arrangement are normally used to estimate 
a single value of p; it is assumed that all the p„ are equal. Thus finally, Ja is given by 

Equation (8.5). 

The condition required for that last approximation (all p„ are equal) is essentially as 

follows. Let xv be the 'width' of the curve of p versus R, i.e. the change AR that causes p to 
change appreciably. The condition is 

wr0 » L (1.4) 

where r0 is the range of the reflector. This condition is expected to hold except for near- 

specular reflectors; thus the approximation should generally be good. It is most likely to fail 

45 That set of conditions needs to be strengthened if w, defined below as the 'width' of the curve of p 

versus R, is small compared to 7t/2 . The strengthening is done by imposing conditions of the same 
form as (1.4). 
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when the surface approximates a specular reflector and when furthermore the alignments 
are such that the 'specularly reflected' beam meets the array. This second requirement 
means46 R~ir g ~ 0. Then a part of the array may receive the 'specular reflection' while 
the rest of the array receives a much lower intensity. 

Under the latter circumstances, a comparison of (1.3) with (8.5) shows that the experiment 
will    yield    as    the    measured    p     the    average    reflection    coefficient    given    by 

POT 
=Zd„wn9n/Zdn

w2n ■   Note that in reaching this conclusion, two key assumptions have 

been made: (i) that the integral relation used in the experimental analysis holds, and (ii) that 
coherence (Section 7.1) does not cause a departure from the theory. 

> The experiment is set up so that R ~ -i, g ~ 0; so that the second requirement reduces to / = 0 
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